.
B

REPORT DOCUMENTATION PAGE Form approved

Public reporting burden for this collection of information is estimated to average 1 hour per response, inciuding the time for reviewing instructions, searching existing data sou ering
and maintaining the data needed, and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this sollection of information, including
suggestions fof reducing this burden, to Washington Headquariers Service, Directorate for Information Operations and Reporis, 1215 Jetierson Davis Highway, Suite 1204, Adington, VA
22202-4302, and to the Office of Information and Reguiatory Affairs, Otfice of Management and Budget, Washington, DC 20503,

1. AGENCY USE (Leave 2. REPORT 3. REPORT TYPE AND DATES
Final: 15 October 1993 to 15 October
(4. TITLE AND 5. FUNDING
TLD Comanche VAX/MIL~STD-1750 A Ada Compiler System, Version I

3.4.C Digital VAXstation 4000 Model 60 under VMS, 5.5 =)

6. TLU Real 1ime LXecutive (TLortx]), 3.4.C, J3I0IZWI. 11329

uthors: T

Wright-Patterson AFB OH 45433-6503

7. PERFORMING ORGANIZA TION NAME(S) AND 8. PERFORMING
. . q . o ORGANIZATION
Ada Validation Facility, Control Facility ASD/SCEL
Bldg. 676, Rm 135 AVER~VSR-575.0993
Wright-Patterson AFB, Dayton, OH 45433
9. SPONSORING/MONITORING AGENGY NAME(S) AND 10. SPONSORING/MONITORING |
AGENCY

Ada Joint Program Office
The Pentagon, Rm 3E118
Washington, DC 20301-3080

_
11. SUPPLEMENTARY

12a DISTRIBUTION/AVAILABILITY 12b. DISTRIBUTION

ApL ~oved for public release; distribution unlimited.

13. (Maximum 200

TLD Comanche VAX/MIL-STD-1750A Ada Compiler System, Version 3.4.C

Host: Digital VAXstation 4000 Model 60 under VMS, 5.5

Target: TLD MIL-STD-1750A Multiple Processor Simulator (TLDmps) under TLD Real Time
Executive (TLDrtx), 3.4.C

RDEC 141903! r
e

14, SUBJECT 15. NUMBER OF
Ada programming language, Ada Compiler Val. Summary Report, Ada ¢

Compiler, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MILKFD 18154, AJPO

17, SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION . CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN Prescribed by ANSI Std.

Standard Form 298, (Rev. 2.89)

1995

TLD MIL-STD-1750A Multiple Processor Simulator (TLDmps) under AD-A273 708
]

AVF Control Number: AVF-VSR-575.0993
Date VSR Completed: 15 October 1993
93-08~17-TLD

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 931012W1.11329
TLD Systems, Ltd.
TLD Comanche VAX/MIL-STD-1750A Ada Compiler System, Version 3.4.C
Digital VAXstation 4000 Model 60 under VMS, 5.5 =>
TLD MIL-STD-1750A Multiple Processor Simulator (TLDmps)
under TLD Real Time Executive (TLDrtx), 3.4.C

(Final)

Prepared By:
Ada validation Facility
645 CCSG/SCSL
Wright-Patterson AFB OH 45433-6503

93-30
HII//III/II/MI/////II//I//II/I///I/I/IIII/ 03 12 13 0 70

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 12 October 1993,

Compiler Name and Version: TLD Comanche VAX/MIL-STD-1750A Ada Compiler System,
Version 3.4.C

Host Computer System: Digital VAXstation 4000 Model 60
under VMS, 5.5

Target Computer System: TLD MIL-STD-1750A Multiple Processor Simulator (TLDmps)
under TLD Real Time Executive (TLDrtx), 3.4.C

Customer Agreement NMumber: 93-08-17-TLD

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate 931012w1.11329
is awarded to TLD Systems, Ltd. This certificate expires two years after
MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

el €

Ada Valldation Facility

Dale E. Lange

AVF Manager

645 CCSG/SCSL

Wright-Patterson AFB OH 45433-6503

DTIC QUALITY INSPCCTED 3

a rganization
Director, ter and Software Engineering Division
Institute for Defense Analyses

Alexandria VA 22311

£ Gk S—

Ada JoInt Program Office

M. Dirk Rogers, Major, USAF . -
Acting Director C
Department of Defense [- C e
washington DC 20301 = '

DECLARATION OF CONFORMANCE

Customer: TLD Systems, Ltd.

Ada Validation Facility: 645 C-CSG/SCSL
Wright-Patterson AFB OH 45433-6503

ACVC Version: 1.11
Ada Implementation:

Compiler Name and Version: TLD Comanche VAX/MIL-STD-1750A Ada
Compiler System, Version 3.4.C

Host Computer System: Digital VAXstation 4000 Model 60
executing VAX/VMS 5.5.

Target Computer System: TLD MIL-STD-1750A Multiple Processor
Simulator (TLDmps) under TLD Real Time
Executive (TLDrtx), Version 3.4.C

Customer’s Declaration

I, the undersigned, representing TLD Systems, Ltd., declare that TLD
Systems, Ltd. has no knowledge of deliberate deviations from the Ada
Language Standard ANSI/MIL-STD-1815A in the implementation listed in this
declaration executing in the default mode. The certificates shall be
awarded in TLD Systems, Ltd.’s corporate name.

— —

"\ S - — L
S T
pye .
TLP Sysdtems, Ltd.

Terry L. Dunbar, President

Date: tober

VAX/1750A/TLDmps ’ Page 1

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

AMEST MSES ® @& & e & o ¢ e a2 & e+ s 4 e s o o

REmmCESo ¢ & ¢ s e o o ¢ & ¢ © s O© s & & o s o

IMPLEMENTATION DEPENDENCIES

CHAPTER 2

. 2-1
1
4

INAPPLICABLE 'IESTS- . L) - - . . - . . . 2-
TEST mDIFICATImS- e & o & ® ° ° & o * o ¢ o o o = 2—

WITHDRAWN TESTS - . . . L . . - .

PROCESSING INFORMATION

CHAPTER 3

— =N

3-
3-
3-

.
.

TEST mme. e @ 8 * e & & 8 * o e & o ¢ o v o o

mTImmm.‘l............
SUMMARY OF TEST RESULTS . « + & « o« « o s o & o »

MACRO PARAMETERS

APPENDIX A

COMPILATION SYSTEM OPTIONS

APPENDIX B

APPENDIX F OF THE Ada STANDARD

APPENDIX C

CHAPTER 1
INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro92] against the Ada Standard {Ada83) using the
current Ada Compiler validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to (Pro92j. A
detailed description of the ACVC may be found in the current ACVC User’s Guide
[uG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act” (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are accurate
and complete, or that the subject implementation has no nonconformities to the
Ada Standard other than those presented. Copies of this report are available
to the public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

{Ada83) Reference Manual for the Ada Programming Language, ANSI/MIL-STD-1818A,
February 1983 and 150 8652-1987.

(Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1932.

(UG89] Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A, B,
C, D, E, and L. The first letter of a test name identifies the class to which
it belongs. Class A, C, D, and E tests are executable. Class B and class L
tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CHECK FILE are used for this purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada standard. The procedure CHECK FILE is used to check the contents of text
files written by some of the Class C tests for Chapter 14 of the Ada Standard.
The operation of REPORT and CHECK FILE is checked by a set of executable
tests. If these units are not operating correctly, validation testing is
discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of the
Ada standard are detected. Some of the class B tests contain legal Ada code
which must not be flagged illegal by the compiler. This behavior is also
verified.

Class L tests check that an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. Errors are
expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values — for example, the largest integer. A list of
the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for this
implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see section 2.1), and possibly
removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of the
customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
validation
Capability
(ACVC)

Ada
Implementation

Ada Joint
Program
Office (AJPO)

Ada
validation
Facility (AVF)

Ada
Validation
Organization
{ AVO)

Compliance of

an Ada
Implementation

Computer
System

Conformity

The software and any needed hardware that have to be added to a
given host and target computer system to allow transformation
of Ada programs into executable form and execution thereof.

The means for testing compliance of Ada implementations,
consisting of the test suite, the support programs, the ACVC
user’s guide and the template for the validation summary
report.

An Ada compiler with its host computer system and its
target computer system.

The part of the certification body which provides policy and
guidance for the Ada certification system.

The part of the certification body which carries out the
procedures required to establish the compliance of an Ada
implementation.

The part of the certification body that provides technical
guidance for operations of the Ada certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or part
of a program and also for all or part of the data necessary for
the execution of the program; executes user-written or
user-designated programs; performs user—designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

Fulfillment by a product, process, or service of all

1-3

INTRODUCTION

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0
LRM

Operating
System

Target

Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

validation

Withdrawn
test

requirements specified.

an individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for which
validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSIMIL-STD-1815A-1983 and IS0 8652-1987. Citations from the
LRM take the form "<section>.<subsection):<paragraph>."

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually, operating
systems are predominantly software, but partial or complete
hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro92).

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate for
this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203A C34006D €355081 €35508J
C35508M €35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
c46022a B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D C83026A B83026B C83041A
B85001L C86001F C94021A C97116A 980038 BA2011A
CB7001A CB70018 CB7004A CCl223a BC1226A CCl226B
BC3009B BD1B02B BD1B0O6A AD1BOSA BD2A02A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD700SE AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD900SA CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118a CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant for
a given Ada implementation. Reasons for a test’s inapplicability may be
supported by documents issued by the 1SO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for the
reasons indicated; references to Ada Commentaries are included as appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 285 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Z (21 tests)
C45241F..Y (20 tests) C45321F,..Y (20 tests)
C45421F..Y (20 tests) C45521F..Z2 (21 tests)
C45524F..2 (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

The following 21 tests check for the predefined type SHORT INTEGER; for
this implementation, there is no such type:

C35404B B36105C C45231B C45304B C45411B
C454128B C45502B C45503B €45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55B07B B55B09D B86001V €86006D
CD7101E

C35404D, C45231D, B86001X, CB6006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG_INTEGER, or
SHORT_INTEGER; for this implementation, there is no such type.

- C35713B, C45423B, B86001T, and CB86006H check for the predefined type
SHORT FLOAT; for this implementation, there is no such type.

C35713D and B86001Z2 check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this implementation,
that range exceeds the range of safe numbers of the largest predefined
floating-point type and must be rejected. (See section 2.3.)

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

C45536A, C46013B, C46031B, C46033B, and C46034B contain length clauses
that specify wvalues for ’'SMALL that are not powers of two or ten; this
implementation does not support such values for ’‘SMALL.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various floating-point operations lie outside the range of the base type;
for this implementation, MACHINE OVERFLOWS is TRUE.

D64005F..G (2) tests use 10 levels of recursive procedure calls nesting;

this level of nesting for procedure calls exceeds the capacity of the
compiler.

2-2

IMPLEMENTATION DEPENDENCIES

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA3004E..F (2 tests) check that a program will execute when an optional
body of one of its library packages is made obsolete; this implementation
introduces additional dependences of the package declaration on its body
as allowed by LRM 10.3(8), and thus the library unit is also made
obsolete. (See Section 2.3.)

LAS007S..T (2 tests) check that a program cannot execute if a needed
library procedure is made obsolete by the recompilation of a library unit
named in that procedure’s context clause; this implementation determines
that the recompiled unit’s specification did not change, and so it does
not make the dependent procedure obsolete. (See Section 2.3.)

CD1009C checks whether a length clause can specify a non-default size for
a floating-point type; this implementation does not support such sizes.

CD2A53A checks operations of a fixed-point type for which a length clause
specifies a power-of-ten TYPE'SMALL; this implementation does not support
decimal ’‘SMALLs. (See section 2.3.)

CD2AB4A, CD2AB4E, CD2AB4I..J (2 tests), and CD2A840 use length clauses to
specify non-default sizes for access types; this implementation does not
support such sizes.

The following 264 tests check operations on sequential, text, and direct
access files; this implementation does not support external files (See
Section 2.3 regarding EE3412C):

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411a CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111lp..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304a CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..L .3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE3410F CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE34l4a

CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)

IMPLEMENTATION DEPENDENCIES

CE3606A..B (2) CE3704A..F (6) CE3704M..0 (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an attempt to

create a file and expect NAME ERROR to be raised; this implementation

does not support external files and so raises USE ERROR. (See section
2.3.)

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 59 tests.

Nb: CD2AB1A is subject to two, distinct modifications as described below (the
test name is marked with an asterisk).

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B220052 B24009A B25002A B26005A B27005A B44004D
B59001E B73004B B83012A B83033B BA2001E BA3006A
BA3013A

C34009D and C34009J were graded passed by Evaluation Modification as directed
by the AVO. These tests check that ’'SIZE for a composite type is greater than
or equal to the sum of its components’ 'SIZE values; but this issue is
addressed by AI-00825, which has not been considered; there is not an obvious
interpretation. This implementation represents array components whose length
depends on a discriminant with a default value by implicit pointers into the
heap space; thus, the ’'SIZE of such a record type might be less than the sum
of its components 'SIZEs, since the size of the heap space that is used by the
varying-length array components is not counted as part of the 'SIZE of the
record type. These tests were graded passed given that the Report.Result
output was "“FAILED" and the only Report.Failed output was "INCORRECT
'BASE’SIZE", from line 195 in C34009D and line 193 in C34009J.

A35801E was graded inapplicable by Evaluation Modification as directed by the
AVO. The compiler rejects the use of the range FLOAT’FIRST..FLOAT’LAST as the
range constraint of a floating-point type declaration because the bounds lie
outside of the range of safe numbers (cf. LRM 3.5.7:12).

CA3004E..F (2 tests) were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests check that a program will execute when an
optional body of one of its library packages is made obsolete. This
implementation, for optimization purposes, compiles all compilation units of a
compilation into a single object module with a single set of control sections,
collectively pooled constants, with improved addressing. As a consequence,
the optional package body of these tests and its corresponding library unit
have a mutual dependence, and thus the library unit is also made obsolete.
This implementation-generated dependence is allowed by LRM 10.3(8).

2-4

IMPLEMENTATION DEPENDENCIES

LAS007S..T (2 tests) were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests check that a program cannot execute if a
needed library procedure is made obsolete by the recompilation of a library
unit named in that procedure’s context clause. This implementation determines
that the recompiled unit’s specification did not change, and so it does not
make the dependent procedure obsolete; the program executes, calling
Report.Failed. The AVO ruled that this behavior is acceptable, in light of
the intent for the revised Ada standard to permit such accommodating
recompilation; further deliberation by the AVO and ARG will determine whether
these (and many related) tests will be withdrawn.

The tests below were graded passed by Test Modification as directed by the
AVO. These tests all use one of the generic support procedures, Length Check
or Enum Check (in support files LENCHECK.ADA & ENUMCHEK.ADA), which use the
generic procedure Unchecked Conversion. This implementation rejects
instantiations of Unchecked Conversion with array types that have non-static
index ranges. The AVO ruled that since this issue was not addressed by

AI-00590, which addresses required support for Unchecked Conversion, and since
AI-00590 is considered not binding under ACVC 1.11, the support procedures
could be modified to remove the use of Unchecked Conversion. Lines 40..43,
50, and 656..56 in LENCHECK and 1lines 42, 43, and 58..63 in ENUMCHEK were
commented out.

CD1009A CD10091 CD1009M CD1009V CD1009wW CD1C03A
CD1C04D CD2A21A..C CD2A22J CD2A23A..B CD2A24A CD2A31A..C
*CD2AS1A CD3014C CD3014F CD3015C CD3015E..F CD3015H
CD3015K CD3022A CD4061A

*CD2AB1A, CD2AB1B, CD2AB1E, CD2AB3A, CD2A83B, CD2A83C, and CD2AB3E were graded
passed by Test Modification as directed by the AVO. These tests check that
operations of an access type are not affected if a 'SIZE clause is given for
the type; but the standard customization of the ACVC allows only a single size
for access types. This implementation uses a larger size for access types
whose designated object is of type STRING. The tests were modified by
incrementing the specified size $ACC SIZE with '+ 32’.

CD2AS3A was graded inapplicable by Evaluation Modification as directed by the
AVO. The test contains a specification of a power-of-10 value as ’'SMALL for a
fixed-point type. The AVO ruled that, under ACVC 1.11, support of decimal
'SMALLs may be omitted.

CE2103A, CE2103B, and CE3107A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests abort with an unhandled
except1on when USE ERROR is raised on the attempt to create an external file.
This is acceptable behavior because this implementation does not support
external files (cf. AI1-00332).

EE3412C was graded inapplicable by Evaluation Modification as directed by the
AVO. This test checks the operation of TEXT IO.LINE, and it assumes that
package Report uses TEXT 10. For this validation, package Report was modified
to use a more efficient character output procedure. As a consequence of the
modification to Report, a call to a Report procedure doesn’t increment the

2-5

IMPLEMENTATION DEPENDENCIES

line count, and the check at line 46 fails. The AVO ruled that this test be
graded inapplicable, and that it remain in the set of I/0 tests that is
normally not processed during on-site testing for implementations that do not
support file systems.

CE3413B was graded inapplicable by Evaluation Modification as directed by the
AVO. This test includes the expression "COUNT’/LAST > 150000", which raises
CONSTRAINT ERROR on the implicit conversion of the integer literal to type
COUNT since COUNT’LAST = 32,767; there is no handler for this exception, so
test execution is terminated. The AVO ruled that this behavior was
acceptable; the AVO ruled that the test be graded inapplicable because it
checks certain file operations and this implementation does not support
external files.

Many of the Class A and Class C (executable) test files were combined into
single procedures ("bundles") by the AVF, according to information supplied by
the customer and guidance from the AVO. This bundling was done in order to
reduce the processing time-—compiling, linking, and downloading to the target.
For each test that was bundled, its context clauses for packages Report and
(if present) SYSTEM were commented out, and the modified test was inserted
into the declarative part of a block statement in the bundle. The general
structure of each bundle was:

WITH REPORT, SYSTEM;
PROCEDURE <BUNDLE NAME> IS

— repeated for each test

DECLARE

<TEST FILE> [a modified test is inserted here, ...]
BEGIN

<TEST NAME)>; [... and invoked here]

EXCEPTION —test is not expected to reach this exception handler
WHEN OTHERS => REPORT.FAILED("unhandled exception ");
REPORT .RESULT;
END;

-— {... repeated for each test in the bundle)
END <BUNDLE NAME>;

The 1293 tests that were processed in bundles are listed below; each bundle is
delimited by '<’ and ’>’.

<A21001A A22002A A22006B A26004A A26007A A27003A A27004A
A29002A A29002B A29002C A29002D A29002E A29002F A29002G
A29002H A290021 A290023 A29003A A2A031A> <A32203B A32203C
A32203D A33003A A34017C A35101B A35402A A35502Q A35502R
A35710A A35801A A35801B A35801F A35902C A38106D A38106E
A38199A A39005B A39005C A39005D A39005E A39005F> <A39005G
AS4B01A A5S4B02A ASSB12A AS5B13A AS5B14A A62006D A71002A
AT1004A A72001A A73001I A73001J A74105B A74106A A74106B

2-6

IMPLEMENTATION DEPENDENCIES

A74106C AT420SE AT4205F> <AB3009A A83009B A83041B AB83041C
AB3041D AB3A02A AB3A02B AB3A06A AB3A08A A83COIC A83COLD
AB3COlE AB3COIF A83CO1G AB3CO1H AS83CO1I A83C01J A8S007D
AB5013B AB7BS9A> <AB7006A AC1015B AC3106A AC3206A AC3207A>
<ADIAOLA AD1AO1B ADIDO1E AD7001B AD7005A AD710l1A AD7101C
AD7102A AD7103A AD7103C> <AD7104A AD7203B AD7205B> <C23001A
C23003A C23006A C24002A C24002B C24002C C24003A C24003B
C24003C C24106A C24113A C24113p C24113C C24113D C24113E>
<C24201A C24202A C24202B C24202C (C24203A C24203B C24207A
C24211A C25001A C25001B C25003A C25004A C26002B C26006A>
<C26008A C27001A C2A001A C2A001B C2A001C C2A002A C2A006A
C2A008A C2A009A C2A021B> <C32107A C32107C C32108A C32108B
C32111A C32111B> <C32114A C32115A C32115B> <C32117A C34001a
C34001C C34001D C34001F C34002A C34002C C34003A C34003C>
<C34004A C34004C C34005A C34005C> <C34005D C34005F C34005G
C34005I> <C34005J (C34005L C34005M C340050> <C34005P C34005R
C34005s C34005U0 C34006A C34006F C34006G C34006J> <C34006L
C34007A C34007D C34007F C34007G> <C34007I 340073 C34007M
C34007P> <C34007R C34007S> <C34009A C34009F C34009G C34009L
C34011B C34012A C34014A C34014C> <C34014E C34014G C34014H
C340147 C34014L C34014N C34014P C34014R C34014T> <C34014U
C34014w C34014Y C34015B C34016B C34018A C35003A C35003B
C35003D C35003F C35102A C35106A C35404A C35404C> <C35503a
C35503B C35503C (C35503D C35503E C35503F C35503G C35503H
C35503k> <C35503L C355030 C35503P C35504A C35504B C35505A
C35505B C35505C> <C35505D C35505E C35505F C35507A C35507B>
<C35507C C35507E C35507G C35507H C355071 C35507J> <C35507K
C35507L> <C35706A C35706B C35706C C35706D C35706E> <C35707A
C35707B C35707C C35707D C35707E C35708A C35708B C35708C
C35708D C35708E> <C35711A C35711B C35712A C35712B C35712C
C35713A C35713C> <C35801D C35802A C35802B C35802C C35802D
C35802E> <C35902A C35902B C€35902D C35904A C35904B C35A02A
C35A03A C35A03B C35A03C C35A03D> <C35A03N C35A030 C35A03P>
<C35A03Q C35A04A C35A04B C35A04C> <C35A04D C35A04N> <C35A040
C35A04P> <C35A04Q C35A05A C35A05D C35A0SN> <C35A05Q C35A06A
C35A06B> <C35A06D C35A06N C35A060> <C35A06P C35A06Q C35A06R
C35A06S C35A07A C35A07B C35A07C> <C35A07D C35A07N C35A070
C35A07P C35A07Q C35A08B C36003A> <C36004A C36104A C36104B
C36105B C36172A C36172B C36172C> <C36174A C36180A (C36202a
C36202B C36202C C36203A C36204A C36204B C36204C> <C36205a
C36205B C36205C C36205D C36205E C36205F C36205G C36205H>
<C362051 C36205J C36205K C36301A C36301B C36302A C36303A
C36304A C36305A> <C37002A C37003A C37003B C37005A C37006A
C37007A C37008A C37008B> <C37008C C37009A C37010A C37010B
C37012A C37102B C37103A C37105A C37107A C37108B C37206A
C37207A C37208A C37208B C37209A C37209B C37210A> <C37211A
C37211B C37211C C37211D C37211E C37213A C37213B (C37213C
C37213D> <C37213E C37213F (€37213G C37213H> <C37213J C37213K
C37213L C37214A> <C37215A €37215B> <C37215C C37215D C37215E
C37215F C€372156 C37215H C37216A C37217A C37217B C37217C>
<C37304A C37305A C37306A C37307A C37309A C37310A C37312A
C37402A C37403A> <C37404A C37404B C37405A C37409A C37411A
C38002A C38002B C38004A C38004B C38005A C38005B C38005C
C38006A C38102n (C38102B (C€38102C C381020 C38i02E C38104A

2-1

C38107Aa
C39006D
C39008C>
C41107a
C41206A
C41303F
C413030
C41304n>
C41307D
Cc41322a
<C41401a
C42007B>
C420071>
C43104a>
C43204c
C432058
C432051
<C43207D
C43212C
C43214F
C44003E
C45101G
C45111c>
C45122a
<C45201A
C452208
<C45232a
<C45242a
<C45272a
C45282B
C45321¢c
C45342a
<C45347A
C45412a
C45421E>
<C45504A
C45521¢C
C45524D
C45532F
<C45534a
C45621A
C45624B
C45641cC
C46011a
C46014A
<C46041A
C46051B
C47002C
<C47008A
C48004E
<C48007A
C48009A
<C48009H
C49021A

IMPLEMENTATION DEPENDENCIES

C38107B> <C38108A C38201A (C38202A C39006A C39006B
C39006E C39006G C39007A C39007B C39008A C€39008B
<C41101D C41103A C41103B C41104A C41105A C41106a
C41108A C41201D C41203A (C41203B> <C41204A C41205A
C41207A C41301A C41303A C41303B C41303C C41303E
C41303G C413031 C413037 C41303K C41303M C41303N
C41303Q C41303R C41303S C41303U C41303v C41303w
<C41304B C41306A C41306B C41306C C41307A C41307C
C41308A C41308C (C41308D C41309A> <C41320A C41321A
C41323A C41324A C41325A C41326A C41327A C41328A>
C41402A C41403A C41404A C42005A C42006A C42007A
<C42007C C42007D C42007E C42007F C42007G C42007H
<C420070 C42007K C43003A C43004B C43103A C43103B
<C43105A C43105B C43106A C43107A C43108A C43204A
C43204E C43204F> <C43204G C43204H C432041 C43205A
C43205C C43205D C43205E C43205F C43205G C43205H
C432053 C43205K C43206A C43207A C43207B C43207C>
C43208A C43208B C43209A C43210A C43211A C43212A
C43213A> <C43214A C43214B (C43214C C43214D C43214E
C43215A C43215B C43222A> <C43224A C44003A C44003D
C44003F C44003G C45101A C45101B C45101C C45101E
C45101H C451011 C45101K C€45104A C45111A C45111B
<C45111D C45111E C45112A C45112B C45113A> <C45114B
C45122B C45122C C45122D C45123A C45123B C45123C>
C45201B C45202A C45202B C45210A C45211A C45220A
C45220C C45220D C45220E C45220F C45231A C45231C>
C45232B C45241A C45241B C45241C C45241D C45241E>
C45242B C45251A C45252A C45252B C45253A C45262a>
C45273A C45274A C45274B C45274C C45281A C45282A
C45291A C45303A C45304A C45304C> <C45321A C45321B
C45321D C45321E> <C45323A C45331A C45331D C45332A
C45343A C45344A C45345A C45345B C45345C C45345D>
C45347B C45347C C45347D C45411A C45411C C45411D
C45412C> <C45413A C45421A C45421B C45421C C45421D
<C45423A C45431A C45502A C45502C C45503A C45503C)>
C45504C C45504D C45504F> <C45505A C45521A C45521B
C45521D C45S21E> <C45523A C45524A C45524B C45524C
C45524E> <C45532A C45532B (C45532C (C45532D C45532E
C45532G C45532H C455321 C45532J C45532K C45532L>
C45611A C45611C C45613A C45613C C45614A C45614C
C45621B C45621C C45621D C45621E> <C45622A C45624A
C45631A C45631C C45632A C45632C C45641A C45641B
C45641D C45641E> C45652A C45662A C45662B C45672A
C46012A C46012B C46012C> <C46012D C46012E> <C46013A
C46021A C46023A C46024A C46031A C46032A C46033A>
C46042A C46043A C46043B> <C46044A C46044B C46051A
C46051C> <C46052A C46053A C46054A C47002A C47002B
C47002D C47003A C47004A C47005A C47006Aa C47007A>
C47009A C47009B C4B00O4A C48004B C48004C C48004D
C48004F C4800S5A C48005B C48005C C48006A C48006B>
C48007B C48007C C48008A C48008B C48008C C48008D
C48009B C48009C C48009D C48009E C48009F C48009G>
C480091 C48009J C48010A C48011A C48012A C49020A
C49022A C49022B C49022C C49023A C49024A

2-8

C49025A

C49026A>
C4A010D
<C51002A
C52005¢
C52009A
C€52013a>
C52103L>
C52104A
C52104L
<C53004B
C54A03a
C54A13C>
C54A27A
C54A42F
C55B07A>
C55B16A
C56002a
<C58004A
C58005B
C59002C>
€62004A
C640058
C64103F>
C64104G
C64104N
C64105F>
C64109A
C64109H
C64202a
C66002E
C67002E>
C670058
C74004A
C74210A
C74306Aa
C74402B
C83023A
C83030A>
C83B02A
C83r03A
€850058
<C85006F
C87B04A
<C87B07C
C87B10A
C87B14D>
c87B23A
C87B30A
CB1005A
CB2006A
CB4003A
CB4013A
<CC10108
cci1220a

IMPLEMENTATION DEPENDENCIES

<C4A005A C4A00S5B C4A006A C4A007A CA4A010A
C4AO011A C4AO12A C4A012B C4AD13A C4AD13B
C51004A CS52001A C52001B C52001C C52005A
C52005D CS52005E C52005F> <C52007A C52008A
C52009B C52010A C52011A C52011B C52012A
<C52103B C52103C CS52103F C52103G C52103H
<C52103M C52103P C52103Q C52103R C52103S
C52104B C52104C C52104F> <C52104G (52104H
C52104M C52104P (C52104Q C52104R C52104X
C5300SA CS53005B C53006A C53006B C53007A
C54A04A CS4A06A CS54A07TA C54A11A CS54A13A
<CS54A13D C54A22A (C54A23A CS54A24A CS54A24B
C54A41A CS54Ad2A C54Ad42B C54A42C C54A42D
C54A42G CSSBO3A CS5B04A C55BOSA CS5B06A
<C55BO8A CS55B09A CSSB10A CS5B11A CS5B11B
C55C01A CSSC02A C55C02B C55C03A C55C03B
C57002A CS57003A C57004A C57004B C57004C
C58004B C58004C CS8004D C58004F C58004G
C5800S5H CS58006A CS8006B CS9001B C59002A
<C61008A C61009A C61010A C62002A C62003A
C62006A C62009A C63004A C64002B> <C64004G
C64005C C64103A C64103B C64103C C64103D
<C64104A C64104B C64104C C64104D C64104E
C64104H C641041 C64104J C64104K C64104L
C641040 C64105A C64105B (C64105C C64105D
<C64106A C64106B C64106C C64106D C64107A
C64109B C64109C C64109D C64109E> <C6410SF
C641091 C64109J C64109K C64109L> <C64201B
C65003A> <C65003B C65004A C66002A C66002C
C66002F C66002G C67002A C67002B C67002C
<C67003A C67003B C67003C C67003D C67003E
C67005C C67005D> <C72001B C72002A C73002A
C74203A C74206A C74207B C74208A C74208B
C74211A C74211B C74302A C74302B C74305A
C74307A> <C74401D C74401E C74401K C74401Q
C74406A C74407B C74409B> <C83007A (C83012D
C83024A CB83025A> <C83027A C83027C (€83028A
<C83031A (C83031C CB83031E (C83032A (C83033A
C83B02B CB3E02A CB3E02B CB83E03A CB3E04A
C84002A CB4005A CB4008A C84009A C85004B
C85005C CB5005D> <C85005E C85005F (C85005G
C85006G> <C87A05A CB7A05B C87B02A C87B02B
C87B04B C87B04C C87BOSA CB7BO6A C8TBOTA
C87B07D CB7BO7E C87BOBA C87B09A C87BOYB
C87B11A CB7B11B C87B13A C87B14A C87B14B
<C87B15A CB7Bl6A CB7B17A C87B18A (C87B18B
C87B24A> <CB7B24B C87B26B CB7B27A C87B28A
C87B31A C87B32A> <CB1001A CB1002A (CB1003A
CB1010A CB1010B CB1010C CB1010D> <CB2004A
CB2007A CB3003A CB3003B> <CB3004A CB4001A
CB4004A CB400SA CB4006A CB40OTA CB4008A
CBS5002A CB7003A CB7005A> <CC1004A CC1005C
CC1018A CC1104C CC1107B CCl111A CCl1204A
CCl221A CC1221B CC1221C CCl1221D> <CC1222A

2-9

C4a0108
C4a014A>
€520058
€52008B
C520128B
C52103K
C52103x
C52104K
C52104Y>
€53008A
C54a138
C54A26A
C54A42E
C55B06B
C55B15A
C55D01A
C57005A>
€58005A
590028
C62003B
€64005A
C64103E
C64104F
C64104M
C64105E
764108A
C64109G
C64201C
C66002D
C67002D
C67005A
C73007Aa
C74209A
C74305B
C74402A
c83022a
C83029A
C83051a
C83F01A
€85005a
C85006A>
C87B03A
C87B07B>
€87B09C
C87B14C
C87B19A
C87B29A
CB1004A
CB2005A
CB4002A
CB4009A
CcC1010A>
CC12078B
CCl224Aa

IMPLEMENTATION DEPENDENCIES

CC1225A> <CC1304A
CC1310A> <CC1311A

CC3011D
CC3123Aa
CC3127Aa
CC3220A
CC3231A
CC3305A
CC3406D
<CC3408A
CC3504D

CC3012a
CC3123B
cc3128a
CC3221A
CcC3232a
CC3305B
CC3407Aa
CC3408B
CC3504E

CC3504K> <CC3601A

CC1304B
CCl311B
CC3015A
CC3125a
CC3203A
CcC3222a
CC3233A
CC3305¢C
CC3407B
CCc3408C

CC3504F> <CC3504G
CC3601C> <CC3603A

CC1305B CC1307Aa
CC2002A €C3004A
CC3106B> <CC3120A

CC3125B CC3125C
CC3207B CC3208A
CC3223A cC3224a
CC3234A cC3235A
CC3305D CC3406A
CC3407C CC3407D
CC3408D CC3504A

CC3504H

CC3606A

2-10

CC1307B CC1308A
CC3007A CC3011Aa
CC3120B Cc3121a

CC3125D> <CC3126A
CC3208B> <CC3208¢
CC3225A> <CC3230A

CC3236A CC3240A
CC3406B CC3406C
CC3407E CC3407F>
CC3504B CC3504C
CC35041 CC35049
CC3606B CC3607B>

CHAPTER 3
PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Robert R. Risinger

TLD Systems, Ltd.

3625 Del Amo Boulevard, Suite 100
Torrance, CA 90503

' Testing of this Ada implementation was conducted at the customer’s site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test of
the customized test suite in accordance with the Ada Programming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC [Pro92].

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item b; see section 2.1), those that require a floating-point
precision that exceeds the implementation’s maximum precision (item e; see
section 2.2), and those that depend on the support of a file system — if none
is supported (item d). All tests passed, except those that are listed in
sections 2.1 and 2.2 (counted in items b and £, below).

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3461

b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 65
d) Non-Processed I/0 Tests 264
e) Non-Processed Floating-Point

Precision Tests 285

f) Total Number of Inapplicable Tests 614 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of tests
was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were loaded into the simulator on the host
computer system, and run. The results were captured on the host computer
system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of the
processing options for this implementation. It also indicates the default
options. The following options were used for testing this implementation:

Compiler

Option / Switch Effect

NoPhase Suppress displaying of phase times during
compilation.

NoLog To cause command line to be echoed on log
file.

NoDebug To suppress generation of debug symbols to
speed compilation and linking.

List To cause listing file to be generated.

Target=1750A Selects the TLD MIL-STD-1750A target

architecture.

3-2

PROCESSING INFORMATION

Linker

Option / Switch Effect

NoDebug Suppresses generation of Debugger symbol
files.

NoVersion Suppresses announcement banners that

contain timestamp and version information
to facilitate file comparing.

All tests were executed with Code Straightening, Global
Optimizations, and automatic Inlining options enabled. Wwhere
optimizations are detected by the optimizer that represent deletion
of test code resulting from unreachable paths, deleteable
assignments, or relational tautologies or contradictions, such
optimizations are reflected by informational or warning diagnostics
in the compilation listings.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89). The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for SMAX IN LEN—also listed here. These values are expressed here
as Ada string aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value
$MAX IN LEN 120 — value of V
$BIG_ID1 (1..V=1 => 'A’, V=> '1’)
$BIG_ID2 (1..V=1 => 'A’, V => 12')
$BIG_ID3 (1..v/2 => 'A’) & '3’ &
(1..v=-1-v/2 => 'a’)
$BIG_ID4 (1..Vv2 => 'A’) & '8’ &
(1..V-1-v/2 => 'A’)
$BIG_INT LIT (1..v=3 => 70’) & "298"
$BIG_REAL LIT (1..v-5 => r0’) & "690.0"
$BIG_STRING1 ' & (1..V/2 => 'A’') & "
$BIG_STRING2 " & (1..v-1-Vv/2 => 'A’) & '1" & '"'
SBLANKS (1..v=20 => * 1)

$MAX LEN INT BASED LITERAL
"2:" & (1..Vv-5 => '0") & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..V-7 => '0’) & "F.E:"

A-l

MACRO PARAMETERS

$MAX STRING LITERAL

The following table lists all of the other macro parameters and their

respective values.

Macro Parameter

g (1..V-2 = 'A’') & '

Macro Value

$ACC_SIZE
$ALIGNMENT
$OOUNT_LAST
$DEFAULT MEM SIZE
$DEFAULT STOR UNIT
$DEFAULT SYS NAME
$DELTA DOC
$ENTRY_ADDRESS
SENTRY ADDRESS1
SENTRY_ADDRESS2
$FIELD LAST

$FILE TERMINATOR
$FIXED NAME
$FLOAT NAME
$FORM_STRING
$FORM_STRING2

16 (48 for access to STRING)
4

511

65536

16

AF1750

2,0**(-31)

15

17

19

127

ASCII.FS

NO_SUCH FIXED TYPE
NO_SUCH_<'LOAT_TYPE

CANNOT_RESTRICT_FILE CAPACITY

$GREATER _THAN DURATION

90000.0

$GREATER THAN DURATION BASE LAST

T131073.0

$GREATER THAN FLOAT BASE LAST

1.71000E+38

SGREATER THAN FLOAT SAFE_LARGE

2.13000E+37

A-2

MACRO PARAMETERS
SGREATER _THAN_SHORT FLOAT SAFE LARGE
NO_SUCH_SHORT FLOAT TYPE
SHIGH PRIORITY 64

$ILLEGAL EXTERNAL FILE NAME1
BADCHARG. |

$ILLEGAL EXTERNAL FILE NAME2
"THISFILENAMEWOULDBEPREFECTLYLEGAL" &
" IFITWERENOTSOLONG . SOTHERE"

SINAPPROPRIATE LINE LENGTH

-1
$INAPPROPRIATE PAGE LENGTH

-1
SINCLUDE PRAGMAL PRAGMA INCLUDE ("A28006D1.TST")
$INCLUDE PRAGMA2 PRAGMA INCLUDE ("B28006D1.TST")
$INTEGER FIRST -32768
$INTEGER LAST 32767

$INTEGER LAST PLUS 1 32768
SINTERFACE LANGUAGE ASSEMBLY
SLESS_THAN DURATION -90000.0

SLESS_THAN DURATION BASE FIRST
-131073.0

$LINE TERMINATOR ASCII.CR
$LOW_PRIORITY 1

$MACHINE CODE_STATEMENT
R_FMT' (OPCODE=>LR, RA=>R0, Rk=>R2) ;

SMACHINE _CODE_TYPE ACCUMULATOR

SMANTISSA DOC 31

$MAX DIGITS 9

$MAX INT 2 147_483 647
$MAX INT PLUS 1 2 147 483 648
$MIN_INT -2_147_483 648

A-3

MACRO PARAMETERS

SNAME NO_SUCH_INTEGER TYPE

SNAME LIST NONE, NS16000, VAX, AF1750, 28002, z8001,
AMDAHL, 18086, 180286, 180386, Z80000,
NS32000, IBMS1, M68020, NEBULA, NAME X, HP

S$NAME SPECIFICATION1 Not supported

$NAME SPECIFICATION2 Not supported

$NAME SPECIFICATION3 Not supported

SNEG_BASED INT 164FFFFFFFE#
$NEW_MEM SIZE 65535
$NEW_STOR_UNIT 16

$NEW_SYS NAME AF1750
$PAGE_TERMINATOR ASCII.CR & ASCII.FF
$RECORD_DEFINITION Withdrawn
$RECORD_NAME Withdrawn

$TASK SIZE 16

S$TASK_STORAGE SIZE 2000

$TICK 1.0/10_000.0
SVARIABLE ADDRESS 16480004
$VARIABLE_ADDRESS1 16#80204#

$VARIABLE ADDRESS2 16480404#
$YOUR_PRAGMA Withdrawn

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted otherwise,

references in this appendix are to compiler documentation and not to this
report.

B-1

TLD ADA COMPILER 1750A-A?A-Zg

COMPILER USAGE

3.7 CoMPILER OPTION SWITCHES

Compiler option switthes provide control over various processing and
outpu.. features of the compiler. These features include several
varieties of listing output, the level and kinds of optimizaticns
desired, the choice of ctarget computer, and the operaticn of the
compiler in a syntax checking mode only.

Keywords are used Zfor selecting variocous compiler options. The
conplement keyword, if it exists, is used to disable a compiler option
and is formed by prefixing the switch keyword with "NO".

Switch names may be ctruncated to the least number of characrers
required to uniquely identify the switch. For example, the switch
"CROSSREF" (explained in the list below) may be uniquely identified by
the abbreviation "CR" or any longer abbreviation. In the list of
switches on the following pages, the abbreviatiocns are in bold and the
cpticnal extra characters are not bolded.

If an opticn is not specified by the user, a default setting is

assumed. All specified compiler options apply to a single invocation
of the compiler.

The default setting of a switch and its meaning are defined in the
table below. The meaning of the complement form of a gwitch is
normally the negaticn of the switch. For some switches, the complement

meaning is not obvicus; these complement switch keywords are listed
separately.

In the description of the switches, the target dependent name carget is

used. The value of this symbol is determined by the value of the
TARGET switch.

Campiler-generated £ile specifications generally conform to host
conventicns. Thus, any generated filename is the source filename
appended with the default <£ile ctype. The output file name can be
completely or partially specified.

ﬂmmmu-n B-2

TLD ADA COMPILER 1750A-ADA-2B

CoMPILER USAGE 3-10

SWITCH NAME MEANING

leanoor

NOleaanor -- defauit
32BADDR -- default
NO32maoor

The 32BADDR switch calls Zor address computations using 1750A
double precigiocn fixed point data words. wWhen 16BADDR is selected,
address computations are performed using single precision fixed
point data words ignoring the possibility of a 1750A Fixed Point

Overflow Interrupt due to compucration of an address greater than
T7FFF hex.

ABsoroTe_LIsTING
NOABsoroTE_LIsTING

This switch produces a " . LIX" file with a list of centrol sections
and imports and control secticn and import numbers with references
to the macro listing f£ile (i.e., the line number and c2lumn number
where a relocatable address appears in the macro listang). This
file along with a compiler-generated source listing file and a
linker-generated " .MIX" file (containing the absolute addresses of
these control secticns and imports) are used by the TLD Absclute
Listing Otility to produce a macyo listing ".ABS" £ile containing
absolute rather than relative addresses. Refer to the Coopiler
LIST and MACRO switches, to the Refersnce Document ZJor cShe TID
Linker <for the ABSOLUTE_LISTING switch that produces the " . mix"
file, and to the R bl - - -17

grilizies for <further informaticn regarding the macro listing
containing absolute addresses racher than relative addresses wvhich
are normally created by the Compiler MACRO and LIST switches.
(Also, the ABSOLUTE_LISTING, MACRO, and LIST switches may be
specified for assembly language code in the assembly to produce the
sama files as created by the Compiler to produce the absolute macTo

listing. Refer to the Reference Document Jor che TOD MACIo
Agsembler for further iaformation.)

The MACRC and LIST swaitches must be specified with this switch.

TLD ADA COMPILER 1750A-AI3JA- 2B

ComMPILER USAGE - 11

CArLr TrEE
NOCALL_TREE -- default

This switch is used in comjuncrion with ELABORATOR and LIST to
cause all .CTT files (corresponding to the camplete set of object
£files being linked for this program) %o be read in and a closure of
all calls in the program to be computed. The results of this
analysis is formatted into a subprogram call tree report and cutput
in the ligting £ile. This switch has no effect without the
ELABORATOR and LIST switches.

NOTE: The call tree is inccmplete if any required compilation
unit’s .CTI files are misging.

CHecks -- default
CHeCKS (= (check_identifier{,...}))
NOCHscks(= (check_identifier{,...})}

When the CHECKXS switch is used, zero or more check_zdentifiers are
specified aud the run time checks are enabled. The status of run
time checks associated with unmenticned check_idenrifizrs is
unchanged.

Without any check_idencifiers, the NOCHECKS switch omits all rum
time checks. IZf one or more check_identifiers are specified, the
specified run timea checks are omitted. The status of run time
checks associated with unmentiomed check_identifiers is unchanged.

Checks can be eliminated selectively or completely Dby source

statement pragma Suppress. Pragma Suppress overrides the CHECKS
switch.

Check_identifiers arxe listed below and are described in the LRM,
Sectzon 11.7.

ALL_CHECKS -- default (consists of all the checks below)

ACCESS_CHECK DISCRIMINANT CHECK DIVISION_CHECK
ELABORATION_CHECX INDEX CHECK LENGTH_CHECK
OVERFLOW_CHECK RANGE_CHECX STORAGE _CHECX

CONrIGURATION=configurat. an-idencifier
NOCONFIGURATIONsconfiguracicn-identcifier

This switch provides a conditional compilation (configuratiom)
capability by determining whether or not scurce lipe(s) marked with
a special comment, are compiled. If the CONFIGURATION switch I8
used, the specially commented source line(s) are included in the
compilaticn. 2 neither of these switches or <the NOCONFIGURATION
switch .5 used, the specially commented source linets) are treated
as regular Ada comments and are ignored.

!"11¢:-n-rr-mmlarnr B-4

ﬁ
TLD ADA COMPILER 1750A-A[3)A- %g

COMPILER USAGE

Formac

Conditicnal sourte lines can be specially cammented in cne of tweo
ways: 1) by beginning all conditional socurce lines with
--/configuraticn-identifier or 2) by placing
--{comfiguracion-identifier on a line by icself, placing
conditicnal source on the f£following lines, and by placing
-+-}configuracicn-identifier on a line by itself after the last
conditicnal source line. See the exanmples below:

For a single line:

--/configuration-idencifier condicticnal - source-line
or:
--{configuraticn-idencifier

conditicpal-source-line
--)configuracion-idencifier

For multiple lines:

--/configuraticn-idencifier conditicnal -source-line-1
--/configuracion-idencifier conditicnal - source-line-2
--/configuracica-identifier conditional -source-.line-3

--/configuration-idencifier conditional -source-line-n

or:

--{configuration-idencifier
canditicnal -source-line-1
conditional -source-line-2
conditional-source-line-3

conditicnal -source-line-n
--}configuracion-identifier

The conditicnal-source-line(s) beginning with --/ or between --{
and --) are campiled only if CONFIGURATION=
configuration-identifier is specified.

The spec:al comment characters --/ or --{ and --} must be entered

as shown: no spaces are allowed between zhe dashes and the slash or
between the dashes and a brace.

TLD ADA COMPILER 1750A-A13)A-%§

CoMPILER USAGE

Algo, the configuraticn-identifier must :immediately follow the
special camment characters; 0o space is allowed between the special
comment characters and the configuraticn-identifierx.

NOTE: Any conditicnal source placed ocn the same line as the
--{canfiguracicn-idencifier and/or the --}
canfiguration-idencifier, will be cemsidered conditional source
and will be included in or excluded from the compilaticn as

determined by this switch setting, however, the previcusly
described format is preferred.

Nams .

By default, a /CONFIG=1750A satting is created for the target

computer and model (by the /TARGET and the /MODEL Ceampiler
switches). Therefore, 2750A is not a valid

canfiguratction-identifier for conditional compilation. If used,
conditicnal source with that name will always be included in the
compilaticn whether or not this switch is specified (since that
nams is already specified for the target and model, by default).

Nesting

Conditicnal source lines may be nested, but must be properly

nested; a conditional compilation (configuration) must be
completely nested within another as shown below:

For braces nested within braces:

--{A
conditional - source-line-Al
conditional -source-line-A2
--{B
conditianal -source-line-B1

conditional -source-line-Bn
--)B
conditional -source-line-A3
- }A

If CONFIGTRATION=A 15 used, conditicnal-source-Al, -A2, and -AJ3
will be i1acluded. £ CONFIGURATION=B is used,
conditianal -source-B1 zhrough -3z will be included. If

CONFIGURATION=AB 15 used, conditziamal-source-Al, -A2, -A3 and -31
shrough -3z will be included.

="1n4:--n1mnnza1: B-6

TLD ADA COMPILER 1750A-AI3)A-%§

CoMPILER USAGE

The following example format is also valid:

--{a
--{B
--{C
--{D
--}D
--}C
--}B
..}A

However, the following example format is invalid, since "B" ig not
completely nested within "A":

--{A
--{B
--}A
--}B

and two warning messages will appear: "Unmatched configuracion
switch” will appear for the second "A" and "Missing configuration
switch® will appear for the second "B".

for slashes nested within braces:

--{A

condicicnal -source-line-Al
conditional - source-line-A2

--/B conditiconal -source-line-B
--/C condizional-source-line-C
--/D condicional -source-line-D
coanditicnal - source-line-A3

--}A

1# CONFIGURATION=A is used, conditicpal-source-Al, -A2, and -A3
will be included. If CONFIGURATION=B is used, copditional - source-B
will be included. If CONFIGURATION=ABD is used,
condicicnal - source-Al, -A2, -A3, -B, and -D will be included.

ComPILER USAGE

TLD ADA COMPILER 1750A-A13)A-21§

CRossrer
NOCRossrer -- default

This switch generates a cross reference listing that contains names
referenced in the source code. The cross reference listing is
ineluded in the listing file; therefore, the LIST switch must be
selected or CROSSREF has no effect.

CSeG -- default
NOCS:c

This switch indicates that constants and data are to be allocated
T in different control sectioms.
I
NOCT: -- default

This switch generates a CASE tools interface file. The default

filename is derived from the object Zilename, with a .CTX
extensicn. The .CTI £ile is required to support the
STACK_ANALYSIS, CALL_TREE, FULL_CALL TREE, and INVERTED_CALL_TREE
switches.

bEBus -- default
NODEBws

This switch selects the production of symbolic debug tables in the
relocatable object £f£ile.

Alternate abbreviation: DBG, NODBG

DIxgrosTICS
NODIxGwosTICS -- default

This switch produces a diagnostic message file compatible with
Digital’'s Language Sensitive BEditor and XinoTech Editor. See
Digital’'s documentatiomn for the Language Sensitive Editor for a
detailed explanaticn of the file produced by this switch.

DOCOMENTATIONsdocumentation- £ilename
NODOCTOMENTATION -- default

This switch causes informatiocn collected during compilaticn to be
saved in a specified data base file or a default £ile named
17S0A.DOC :n the compilaticn directory. This informatiom includes
the compilaticn units, the contained scopes., the local declarations
of objects and types and their descriptions, externmal references,
callers, calls, program design language (PDL) which is extracted
from stylized Ada comments embedded in the source code, and any
other :aformation extracted <rom similar stylized Ada corments.
The TiD Ada lafo Display (TlLDaid) permits the user to browse this

TLD ADA COMPILER 1750A-AI3)A-%§

CoMPILER USAGE

data base and to extract selected data base information to support
the understanding of a program cor to produce documentatiocn
describing the program.

NOTE: Although the TLDaid utility is nor yet available, users may
want to begin creating documentaticn data base(s) by using thig
switch when perfocrming compilatiaons. When TLDaid becomas
available, it may then be used cn already existing daca basa(s)
without having to generate them through recompilation.

ELxsoraTOR
NOELABORATOR -- default

This switch generates a setup program (in unit-nameSELAB.CBJ (and a
listing £ile in unic-nameSELAB.LIS if the LIST switch was
specified)) that elaborates all compilation units on which the
specified library unit procedure (main program) depends and then
calls the procedure (main program). When the ELABORATOR switch is
used, The unit name of a previocusly compiled procedure must be
specified instead of a source Z£ile. It is not necessary <O
distinguish a main program from a library unit when it is campiled.

EXczrrIon_1nFo
NOEXceErTION_INFO -- default

This switch generates a string in the relocatable cbject code that
is the full pathname of the file being compiled and generates the
extra instructions required to identify the Ada source locatiomn at
which an unhandled exception occurred. The NOEXCEPTION_INFO switch
suppresses the generation of the sering and che extcra
ipstrucrions. At run time, when an unhandled excepticn occurs. the
source £file and Ada source locatiocn informatiom, if collected by
the EXCEPTION_INFO swatch, is displayed in an error massage.

NOTE: Because the Symbolic Debugger does not use information
generated by EXCEPTION_INFO and it increases program size, this
switch should not be used ordinarily. The EXCEPTION_INFO switch
should be used only if you need to locate the unhandled excepticn
when the source is not running under the debugger.

FoLL_cALL _TREE
NOFoLL_CALL_TREE -- default

When <the TFULL_CALL TREE switch is usaed, the compiler listing
includes all calls including all nested calls in every call. The
NOFULL_CALL TREE swatch shows all nested calls :in the Zfirst
instance cnly and all subsequent calls are referred o the ZIirst

instance. This switch has no effect without c=he ELABORATCR and
LIST switches.

TLD ADA COMPILER l750A-Al3)A-ZB

CoMPILER USAGE - 17

INDExTATION=D
INDEXTATION=3 -- default

This switch controls the indentaticon width in a reformacted source
listing (see the REFORMAT switch descripticn). This swatch assigns
a value to the number of columms used in indentation; the value =n
can range from 1 to 8.

INDIrscr cazn
NOINDIrecT_cAri -- default

If the INDIRECT_CALLS switch is used, all subprograms declared in
the compilation are called with indirect calls. This allows the
user to replace a subprogram body at executicn time by changing the
pointer to the subprogram in the indirect call vector.

INFo -- default

NOINFo
The INFO switch produces all diagnostic messages :ncluding
informaticn-level diagnostic messages. The NOINFO switch
suppresses cthe production of informaticn-level diagnostic messages
only.

INTsL

NOINTsL -- default

This switch intersperses lines of socurce code with the assembly
code generated in the macro ligting. This switch is valid only if
the LIST and MACRO switches are selected. It may be helpful in

correlating Ada source to generated code, but it increases the size
of the listing file.

INVeRTED_CALL_TREE
NOINVERTED_CALL _TREE -- default

This switch determines which calls led to the present cne. A
reversed order call tree is gensrated. This switch has no effect
without the ELABORATOR and LIST switches.

LIST(alisting-file-spec)
NOLIST -- default in interactive mode
LISt -- default for background processes

This switch generates a listing £ile. The default filenams is
derived from the source filename, with a .LIS extensiocn. The
listing-file-spec can be opticnally specified.

TLD ADA COMPILER 1750A-ADA-2B

CoMPILER USAGE 3 -18

LOs
NOLOG -- default

This switch causes the compiler to write in the compilation log,
command line options and the file specification of the Ada source
file being compiled which i8 written to to SYSSOUTPUT (the
operating system’'s standard output). This switeh is useful ign
examining batch output logs because it allows the user to easily
determine which files are being compiled.

MACro
NOMACro -- defauit

This switch produces an assembly like chject code listing appended

to the scurce listing file. The LIST switch must be enabled or
this swatch has no effect.

MAIN :1as
NOMAIN_z1as -- defauic

This switch makes the compiler treat the compilation unit being
campiled as a user-defined elaboraticm or setup program which is
used :instead of that normally produced by the ELABORATOR switch.
The source file must be specified instead of a unit name of a
previously compiled procedure. Usually, <the source £ile is

modified by the user, starting from the version produced by the
WRITE_ELAB switch.

MAXERRORSan
MAXERRORS=500 -- default

This switch assigns a value limit to the number of errors forcing
Jjob termipation. Once this value is exceeded, the compilation is
terminated. Ioformation-level diagnostic messages are not included

in the count of errors forcing termination. The specified value’s
range is from 0 to 500.

ﬁmw«.ﬂ: B-11

TLD ADA COMPILER 1750A-A?A-28

CompPILER USAGE - 19

MODELamodel - name
where model-pname is cne cof the following:
MODEL=STANDARD -- default

-- Provides compilaticn capabilities that are
-- coameon to all models of the targert.

MOoEr.vame
MOpEL.IEM GVsC -- IBM GVSC target
EL=HWELL_GVSC -- Honeywell GVSC target
MODEL.HWELL_GVSC_FPP -- Honeywell GVSC target (with
floating point processor)
MOpEL.rwELL_ECA -- Rockwell Embedded Compiler architecture
MOpEL=RI17S0A -- Rockwell Internaticmal 17S0A architecture
MObEL=RI1750AB -- Rockwell Internaticnal 17S0A/B architecture
MOoEL.MR31750 -~ Marcemi 31750 architecture
MODEL.PACE_1750AE -- PACE 17SOAE architecture
MOpELaMs_1750B_:Iz -- MIL-STD-1750B, Type II
MOpEL.Ms_1750B_1zZ -- MIL-STD-1750B, Type III
. MOpeL=MDC281 -- Marconi MDC281

By default, the compiler produces code for the generic or standard
target. The model switch allows the user to specify a nonstandarxd

model for cthe ctarget; the possible models are indicated in the
ligc, above.

For example, the MDC281 switch selects the MDC281 (MAS 281)
implementation of MIL-STD-17S0A.

NEW rrmrary
NONEW_riBrARY -- default

The NEW_LIBRARY switch cceates a 17S0A subdirectory in your current
working directory amd a 17S0A.LIB library in that subdirecteory,

replacing che contents of the prior subdirectory and library, if
they existed.

The NONEW_LIBRARY switch checks if a 1750A subdirectory exists in
your current working directory and if it does not alresady exist, it

will create the 17S0A subdirectory and a 1750A.LIB library in that
subdirectory.

NOTE: This switch along with the PARENT_LIBRARY switch replaces
the MRKE_LIB swatch.

ﬂmwuﬂ B-12

TLD ADA COMPILER 1750A-ADA-2B

CoMPILER UsaGE 3 - 20

OsJECT(=cbject-£ile-spec)
€T -- default
NOOssEcr

This swicch produces a relocatable object file in the 175QA
subdirectory in the current compilaticn dirsctory. The default
filename is derived from the socurce <Zfilename, with a ".0BJ".
extension.

OPr .. default
OPT(. (parameter(,...})}

NOOPr
NOOPT{= (paramecez{,...}))

This switch enables the specified global optimization of the
compiled code. The negation of this switch disables the specified
global optimizaticn of the compiled code. Certain parameters may
be turned on or off as listed below.

When the OPT switch is entered, without any parameters, all
optimizations listed below are turned on except £for chose which
cannot be turned on. When it is entered with parameters, only the
specified parameters are turned on, if they can be turned on. This
restores the paramsters toO their defaults.

When the NOOPT switch is entered, without any parameters, all
optimizaticns listed below are turned off except £for cthose which
cannot be turned off. When it is entered with parameters, only the
specified parameters are turned off, if they can be turned off.

Default optimizaticns should pot be changed for normal use. Users
may wish to change these optimizaticns for cocmfiguration or testing
purposes., however, TILD Systems recommends that they not be
changed. These default optimizaticns should be changed only when
there is an abnormal situatiocn with data or the program or a bad,
TLD- or user-created algorithm. For example, if the program has an
unused procedure the default cptimization parameter DEAD SUBPROGRAM
dsfault will delete it for production improvement, however, the
user may 20t want the unused procedure deleted for Debugger
pusposes. It users are finding a need to change these
optimizaticng, please notify TLD Systems so that we can resolve the
problem more efficiently.

#wmurn B-13

TLD ADA COMPILER 1750A-ADA-2B

CoMPILER USAGE 3 - 21

swjrcohes:
CODE_MoveMewT
This parameter moves code to improve exscuticn time. (For

example, moves invariant code cut of a loop). This parameter
is turned on by default and can be turned off or om.

CODE_STrRAzGHTENTNG

This parameter ensures that program flow is well formed by
performing rearrangement of segments of code. This paramecer
is turned cn by default and can be turned off or on.

COMmon_surEXPRESSION

Expressiocns with the same operands are not computed a second
time. (For example, if an expression uses "R + B" and another
expressicns uses "A + B", the Compiler does not campute the
second expression, since it knows it has already computed the

value). This parameter is turned on by default and cannot be
turned off.

CONsTANT _arrmimeTIC

This parameter performs constant arithmetic. This paramester
is turned on by default and cannot be turned off.

DEAD_Cope

This parameter removes code that cannot be reached such as
unlabeled code following an unconditional branch. This
parameter is turned omn by default and cannot be turned cff.

DEAD_SusrroGran

This parameter removes subprograms that are not referenced.

This parameter is turned cn by default and can be turned off
cr om.

DEAD_Variasre

This parameter removes local temporary variables that are not
usad during execution. This parameter is turned ocn by default
and can be turned off or on.

ﬂmmu‘u B-14

TLD ADA COMPILER 1750A-ADA-2B

ComPILER UsaGE 3 - 22

DELaAsszan

This paramster cptimizes ccde by deleting redundant
assignments. It cnly performs deleticns allowed by the
semantics of Ada. This parameter is turned on by default and
can be turned cff or on.

Imuoxe

By default, the campiler autcmatically inlines subprograms
that are not visible in a package spec and if the estimated
code size is smaller than the acrual call, it will inline iz.

This parameter is turned om by default and can be turned off
or omn.

LIterar_rooL

This paramecer cverrides the Compiler’s optimization
separation cf compile time comstants into a Separate memory
pool. This parameter enables the user to exercise complete
control over data allocation. This parameter is turned on by
deafault and can be turned cff or on.

LOor_uwroLrING

This parameter applies to register memory only. It causes an
expressicn camputed at the end of a loop to be remembered at
the top of the next iteration. This parameter is turned on by
default and can be turned off or om.

PeepHOLE

This parametexr performs cptimization in very limited
contexts. This parameter is turned on by default and cannot
be turned off.

ReGISTER_DEDICATION

This parameter allows dedicaticn of a register to an cbject or

expressicn +value. This parameter is turned on by default and
cannot be turned off.

SIncrz_mopunE

This parameter creates cne cbject module per compilation unit
rather Than one £for each top-level subprogram. I£ chis
parameter is not used, and the compilation unit spec and body
are 1n separate files, the extension "_b* is added ==o the
package name :in the object £ile name of the package body
(i.e., package-name b.obj) teo differentiate between the

CompPILER USAGE

TLD ADA COMPILER 1750A-A|3)A-Zz§

package body and spec. The user may locate csects from only
the body or spec by specifying the unique object £filename (
package-name b £for the body or package-name for the spec)
followed by the control secticn name. This paramecer ig
turned off by default and cammot be turned on.

STrENGTE_REDUCTION

This parameter selects oOperators that exscute faster. This
paramater is turned on by default and cannot be turned off.

VALDE_rorpInG

Subgtitutions o©of operands known to have the same value ars
performed before expression analysis optimizaticn. (For
example, if B and C have the same value, the expressiocn "A +
C" is used and "A + B" will be recognized ag common and the
Compiler will not compute the second expression, since it
knows it has the same value as the first). This parameter ig
turned on by default and cannot be turned off.

PAGS-B
PAGE=60 -- default

This switch assigns a value to the number of lines per page for
ligting. The value can range from 10 to 99.

PARENT LIBRARYs: t-library-
NOPARE&T_LIBRAR?? default wee

The PARENT_LIBRARY swatch uses the specified library as the parent
library for the library to be created. 17S0A rust be included ac

the end of the parent-library-spec. This switch may only be used
with the NEW_LIBRARY switch.

If che NOPARENT_LIBRARY switch is used, the library created by the
NEW_LIBRARY swaitch will have no parent library.

NOTE: This switch along with the NEW_LIBRARY switch replaces the
MAKE_LIB swatch.

PARMs
NOPARMs -- defauir

This PARAMETER switch causes all optiocn switches governing the
campilazion, including the defaulted option switches, t© be
included :n the listing file. The LIST ocpticn switch must also be
selected or this switch has no effect. User specified switches are
preceded iz the listing f£ile by a leading asterisk (*). TRis
switch adds approxaimately one page to the listing £ile.

.

ﬂﬂ.amurn B-16

CoMPILER USAGE

TLD ADA COMPILER 1750A-Al3)A-§§

PHASE -- default
NOPHass

This switch suppresses the display of phase names during
compilaticn. This switch is useful in batch jobs because it
reduces the verbosity of the batch log file.

REF Ip casgmoprion
NOREF_ID_CASB-op:ian -~ default

This is a reformatting option, under the control of the REFORMAT
switch. This switch determines how variable names appear in thas
campiler listing. The opticns for thisg switch are:

ALL_LOWER == All variable names are in lower case.

ALL UNDERLINED -- All variable names are underlined.

ALL_UPPER -- All variable names are in upper case.

AS_1IS -- All variable names appear as is.

INITIAL_CAPS -« All variable names have initial caps. -- default
INSERT_UNDERSCORE -- All variable names have undersccres.

REF Ksy casgecprion
NOREF_Ksy_casg=opticn -- defaulc

T™his is a reformatting option, under the control of the REFORMAT
switch. This switch determines how Ada key words appear in the
compiler listing. The options for this switch are:

ALL_LOWER -= All Ada key words are in lower case. -- default
ALL _UNDERLINED -- All Ada key words are underlined.

ALL_UPPER -= All Ada key words are in upper case.

AS_IS -« All Ada key words appear as is.

INITIRL_CAPS -- All Ada key words have initial caps.
INSERT_UNDERSCORE -- All Ada key words have underscores.

REFORMAT (=reformac-file- spec)
NOREFORMAT -- default

This switch causes the compiler to reformat the source listing in
the listing £file (if no reformac-file-spec was provided) or
generate a reformatted source <£ile, if a reformar.file-spec is
present. The default file extensicn of the reformatted source file
is ".RFM". Reformatting comsists of uniform indentaticn and restains
pumeric literals in their original source Zorm. This switch
psrforms the reformatt:ng as specified by cthe REF_ID_CASE,
REF_KEY_CASE, and INDENTATION switches.

TLD ADA COMPILER 1750A-AI3]A-ZB

CompILER USAGE 25

SOoRcE -- default
NOSOorce

This switch causes the input source program to be included in the
lisring f£ile. Unless they are suppressed, diagnostic messages are
alwvays included in the listing file.

STACK Amaryszs
NOSTACK_Amaryszs -- defaulr

This switch is used wich the ELABORATOR and LIST switches to read
in .CTI £iles (correspconding to the complete set of abject £files
being linked <£for the program). The subprogram call ctree is
analyzed to compute stack requirements for the main program and
each dependent task and writes the stack requirsments to the LIS
file. Without the ELABORATOR switch, at compile time, it records
the call information ‘and stack information for each subprogram and
for any task, the task 3is allocated with an undefined storage

size. The storage size is defined by either the STACK_DIRECTIVES
switch or default value at link time.

NOTES: The tree is incomplete if any required compilaticn unit‘s
.CTI £iles are missing.

Recursion cannot be accounted for because this is a static
analysis.

STACK_DirecrzvEs
NOSTACK_D1recTvES -- default

This switch determines the amount of stack space that must be
allocated for a task, based on the stack size previocusly calculated
by STACK_ANALYSIS. (Stack must be used in conjuncticon with the
STACK_ANMALYSIS switch).

STATIC 1xrT
NOSTATIC iNIT -- default

For statically allocated cbjects that are initialized with constant
values, the STATIC_INIT switch causes the memory locaticn of
statically allocated cbjects to be loaded with their constant
values at load time instead of generating the instructicns to 8TtOre
the comstant values at execution time.

NOTE: The XTRA switch ig required when using the STATIC_INIT
swatch.

TLD ADA COMPILER 1750A-AIBJA- 2B

ComPILER USAGE - 26

SYNTax omuy
NOSYNtax_omry -- defaulc

This switch performs syntax and semantic checking oo the source
program. NO cbject file is produced and the MACRO switch is
ignored. Thes Ada Program Library is not updated.

TARGET=1750A -- default

This switch selects the target computer for which cods is to be
gensrated for this compilaticn. "1750A" selects the MIL-STD-17S50A
Instruction Set Architecture.

WARNINGS -- default
NOWARNINGS

The WARNINGS switch outputs warning and higher level diagnostic
messages.

The NOWARNINGS switch suppresses the cutput of both warning-level
and informaticn-level diagnostic messages.

NID‘I'H-n
WIoTHa110 -- default

This switch sets the number cof characters per line (80 to 132) in
the listing file.

WRrTE_sLAB

NOWRITE_ELAB -- default
The WRITE_ELAB switch generates an Ada source Zile which
represents the main elaboration "setup” program created by the
compiler. The unit name of a previcusly compiled procedure must

be specified instead of a source file. The WRITE_ELAB switch may
not be used at the same time as the ELABORATOR switch.

XTRA
NOXTRA -- default

This switch is used to access features under develcpment or with
the STATIC_INIT switch. See the description of this switch in
Section 3.12.

#mmm B-19

_

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise, references
in this appendix are to linker documentation and not to this report.

TLD EXTENDED MEMORY LINKER 1750A-L§K-3§

HosT DEPENDENCIES

5.1.1 STRING SUBSTITUTION

String substitution allows the user to specify sStrings on the command
line which are substituted for formal parameters in the directive Zile.
This capability allows the user toc create model directive files which
are tailored by string substituticn at each exscuticn of TLDlak.

A formal parameter in the directive £ile is a name or number surrcunded
by braces ({ }). The strings on the cocmmand line are indicated by the
switch STRINGS and/or by the switch PROGRAM. (See Sectiom 5.1.2 for the

STRING and PROGRAM switches and Secticns 5.2.2 and 5.3.2 for examples of
string replacement.)

5.1.2 SWITCHES

The switch-list consists of an opticnal series of switches.

switch{swicek. ..}

The switch format consists of a prefix of "/" for VAX hosted systems or
».n for UNIX hosted systems followed by an identifying key word and an

opticnal value or list cf values. This section provides descriptions of
the switch key words.

TLD EXTENDED MEMORY LINKER 1750A-L£IK-3§

HosT DEPENDENCIES

SWITCH NAME MEANING

NOALOCQMAP

ASan

ABSOLUTE_LISTING
NOABSOLUTE_LISTING

This switch produces a .mix £ile containing the absolute
addresses ©f control sections and imports. This Zfile along
with a compiler-generated or assembler-generated .lix file
(centaining a list of concrol sections and imports and control
sectiocn and import numbers with references to the macro
ligtaing £ile) and source listing file, .lst on UNIX hosted
systems or .lis on VAX hosted systems, are used by the TLD
Absolute Listing Utility to produce a macro listing .abs file
containing absoclute rather than relative addresses. Refer to

the Reference Document Sfor cthe ZID Ada Compiler or the
Reference Oocument <Sor <the TND Macro Asgemdler Ior che

ABSOLUTE_LISTING switch that produces the .lix file and MACRO
and LIST switches that produce the .lst or .lis £ile and to
the Reference Document for che TLD MIL-STD-1700A Utilicies for
further .nfcrmarion regarding the macro listing containing
absolute addresses rather than relative addresses which are
normally created by the TILD Ada Campiler or TILD Macro
Assembler MACRO and LIST switches.

The ALOQMAP switch, if used, must be used in combination with
the MAP switch toc produce a map file. The contents of the map
file depends on the other map £ile switches used in
combination with this swicch and the MAP switch. 3y default,
thig switch will produce a map file consisting of: 1) a list
cf input switches and directives, 2) an allccation map
(containing nodes, modules, control sections, and external
symbols), and 3) an alphabetical symbols listing (containing
external symbols sorted in alphabetical order). The name of
the map file is derived according to the process explained in
the MAP switch description (below).

The NOALOOMAP switch, will not produce an allocation map
listing i1 the map file.

The other map file switches are: SYMBMAP, NOSYMBMAP, NODEMAP,
NONODEMAP, MODMAP, and NOMODMAP.

This switch specifies the number of address scates t= be used
by the program being linked.

ﬁmm;ﬂ: B-22

TLD EXTENDED MEMORY LINKER 1750A-L£ll(-3§

HosT DEPENDENCIES

This switch has the same functicnality as cthe linker directive
ADDRESS STATES descr:bed in Chapter 4.

DEBUG{=file-spec)

When DEBUG is used the linker creates a debug file containing
symbols and their values for the symbolic debugger and a
traceback Z“ile containing call and branching informaticn. If
DEBUG is not specified, the linker does not produce the debug
£ile and ctraceback file. The linker puts symbols which were
included in the relocatable object £ile in the debug file and
traceback informacion alsgso in the relocatable object Zile in
the traceback file. IZ no file-spec is specified, the name of
the debug f£ile and traceback file is derived according to the
process described in the MAP swatch description (below), but
by default, they will have .dbg and .=rb file name extensiocns,
respectavely. The format of the debug and traceback files is
described in Appendix A.

This switch has the same functionality as the linker directive
DEBUG described in Chapter 4.

When DEBUG is used, TLD symbol <£iles (.dbg and .:rb) are
generated if LDMTYPE = LDM or LIM is specified. The HP linker
symbol file (.1} and an assembler symbol file {.a) are
produced whenever LDMTYPE=HP is spacified.

DIRECTIVE({=file-spec)

The DIRECTIVE switch lets TLDlnk know that a directave file
provides linker direcrtives in addition to cthose provided om
the command line. The command line switches overrade those in
the directive £ile in case of conflicring directives. If no
file-spec :is supplied, the directive f£ile is named
<igput_£ile_spec>.lnk. If cthe DIRECTIVE switch is not
supplied, there is no directive file. The directive file name
must be specified if no input-file-spec is provided on the
command line.

ERTRY{=file-spec)

When ENTRY is used, the entry module file is produced. If no
file-spec i3 specified, the name of the entry module £ile is
der:ved according to the process explained in the MAP switch
descraprion (below). The default file extensicn of the entry
module £file i1s .ent. If no ENTRY swatch :is supplied, the
entry module £ile 13 not produced.

The :=INTRY MODULE direcc:ve, described in Chapter 4, may be
used .2 the direct:ve file to restrict the entry points that
are defined :in cthe entry module file. .

#-n.nmun: B-23

T ——

TLD EXTENDED MEMORY LINKER 1750A-L§K-3§

HosT DEPENDENCIES

ERROR
NOERROR
This switch 1lists or suppresses erxor messages. NOERROR
suppresses errors, warnings, and informaticn messages.
INFORMATIOR
NOINFORMATION
This switch lists or suppresses informaticnal messages.
NOINFORMATION suppresses only information messages.
LDM{=file-spec)
NOLDM

The load module file is produced by default, unless the switch
NOLDM s explicitly provided. Therefore, this switch is
normally used with a file-spec £rom which the name of the locad
module file is to be derived. I no £ile extension is
provided, .ldm is used. If the file-spec is not provided, the
name of cthe load module £ile is derived according to the
process explained in the MAP switch description (below) .

LDMTYPE=formac{, formac...)
LDMTYPE=LDM -- default
LDMTYPEsLIM

LDMTYPE=HP

LDMTYPE specifies the format of the load module and symbol
file(s) TlDlnk is to produce. Three formats are currently
available. Only one format may be specified for a link. See
DEBUG for related information.

© LDM (file extension .ldm), the default, specifies..the TLD
locad module formac.

o LIM (file extengicn .llm) specifies a format that is
similar to the TLD load module format, but with logical
addresses instead of physical addresses.

o HP (file extension .x) specifies the Hewlett-Packard
HP64000 absolute file formac.

This switch has the same funct:opality as the linker directive
LDMTYPE described in Chaprer 4.

ﬁﬂamw B-24

TLD EXTENDED MEMORY LINKER 1750A-L£IK-317-'

HosT DEPENDENCIES

On UNIX hosted systems:

letssymbolssymbol(,...)
On VAX hosted systems:
LET= (symbolasymbol(,...})
This switch causes the given symbols to be defined.

This switch has the same functicnality as the linker directive
LET described in Chaprter 4.

MAP(=file-spec)

This switch controls the generaticn of a map (listing) £ile.
If£ this swaitch is not specified, the linker does not produce.a
map file. The contents of the map file depends on the other
map £ile switches used in combination with this switch. By
default, this switch will produce a map file consisting of: 1)
a ligst of input switches and directives, 2) an allocation map
(centaining nodes, modules, ceontrol sections, and extermal
symbels), and 3) an alphabetical symbols liscing (containing
external symbols sorted in alphabetical order). If a full
file-spec is provided, then that is the file specification for
the map Zile. If£ a file-spec with no file extension 1is
provided, then TLDlnk uses the default £ile extensiocn of
.map. If the file-spec is not provided, the file name for the
map file 1s derived from: 1) the name of the first ocbject file
on the command line, or 2) the name of the directive £ile if
no cocbject file is provided on the command line.

The other map file switches are: ALOCMAP, NOALOCMAFP, SYMBMAP,
NOSYMBMAP, NODEMAP, NONODEMAP, MODMAP, and NOMODMAP.

MAXADR=address

This switch sets the maximum physical address to be used by
the program being linked. I£ che MAXADR swatch s not
provided, TIDlnk uses a maximum address of FFFF.

This switch has the same functiocnality as the linker direccsi
MAXADR described in Chapter 4.

MDDEL=model - cype

This swatch :indicates whether the processor uses non-standard
ROM where the startup ROM enable bit is used as a pseudo
address state. The argument =model-type -.s standaréd or

sur_as. The default .3 standard. The sur_as argument .s used
for non-standard ROM. ’

ﬁmw B-25

TLD EXTENDED MEMORY LINKER 1750A-L§K_-3l8-'

HosST DEPENDENCIES

NOMODMAP

The MODMAP switch, if used, sust be used in combinationr with
the MAP switch to produce a map file. The contents of the map
file depends on the other map £ile switches used in
combination with this switch and the MAP switch. By default,
this switch will produce a map file comsisting of: 1) a listc
of ipput switches and directives, 2) an allocaticn map
{containing nodes, modules, ccntrol secticns, and external
symbols), 3) an alphabevical symbels listing (containing
external symbols sorted in alphabetical order), and 4) an
alphabetical modules listing (containing modules sorted in
alphabetical order). The name of the map <£ile 1is derived
according o the process explained in the MAP swicch
descripticon (above) .

The NOMODMAP switch, will not preduce an alphabetical modules
listing in the map file.

The other map file switches are: ALOCMAP, NOALOQMAP, NODEMAP,
NONODEMAP, SYMBMAP, and NOSYMBMAP.

NODE { sname)

NODEMAP
NONODEMAP

This switch names the first node of the link. If this switch
is not iancluded, TLDlnk names the first node ROOT.

The linker NODE directive, described in Chapter 4, may be used
to group modules or selected control sections from modules.

The NODEMAP switch, if used, must be used in cembination with
the MAP swatch to produce a map file. The contents of the map
file depends on the other map £ile switches used in
combination with this switch and the MAP switch. By default,
thig switch will produce a map file consisting of: 1) a list
of input switches and directives, 2) a node structure listing
(containing the address state of each node), 3) an allocation
map (containing nodes, modules, control sections, and external
symbols), and 4) an alphabetical symbols ligting (containing
external symbols sorted in alphabetical order). The name of
the map f£ile .s derived according to the process explained in
the MAP switch descripticn (above).

ﬂmmaﬂ B-26

TLD EXTENDED MEMORY LINKER 1750A-L§K-3§

HosT DEPENDENCIES

The NONODEMAP switch, will not produce a node structure
listing in the map file.

The other map file switches are: ALOCMAP, NOALOCMAP, SYMBMAP,
NOSYMEMAP, MODMAP, and NOMODMAP.

PROGRAMasting

This switch specifies a single string which is a named entry
with the name "PROGRAM®", and which alsc overrides che
directive £file name as the dsfault name of the files produced
by the linker. If *PROGRAMascring is entered, cthem string
replaces all occurrences of the formal parameter (program} in
the directive file. In addition, scring beccmes <the default
name for the f£iles produced by the linker (i.e., the map file,
load module file, debug file, and traceba £ile) .

(See Sectaocns £5.2.2 and 5.3.2 for an example of program name
string replacement on the host system.)

RESERVEa{addrl, addr2}

This switch reserves memory space. Multiple RESERVE switches
are allowed.

This switch has the same functicnality as the linker directive
RESERVE described in Chapter 4.

On UNIX hosted systems:

search{sfile-spec{, file-spec...}}

On VAX hosted systems:

SEARCH(= (file-spec({, file-spec...})}
On VAX hosted systems, the parentheses may be cmitted if cnly
cne file-spec is provided. When this switch is used, TLDlnk
searches the specified files in the pattern described for the
SEARCH directive. Multiple SEARCH switches are allowed. No

defaulr file extensicn is assumed for thig swatch.

This switch has the same functiocnality as the linker directive
SEARCH described in Chapter 4.

ﬂmmu‘n B-27

TLD EXTENDED MEMORY LINKER 1750A-L§K-31l6'

HosT DEPENDENCIES

On UNIX hosted systems:

stringss{sczingl,...}{,}{name2ascring2,...}

On VAX hosted systems:

STRINGSs{ (}{stringl,...}{,}{name2=asering2,...}{)}

SYMBMAP
NOSYMBMAP

The comma between the tTwo types of strings is required to
separate them only if both types are used. On VAX hosted
systems, if only one string is specified, the parenthesis are
not required.

The strings specified in this switch are substituced for
formal parameters in the directive Zfile. This capability
allows the creation of model directive files with are tailored
by string substitution at each execution of TiDlok. A formal

paramerer in the directive file is a name Or number surrcounded
by braces ({}).

strings cf the form scringl ars positicnal entries. The firstc
such entry replaces all occurrances of the formal parameter
{1} in the directive file, the seccnd such entry replaces all
occurrences of the formal parameter (2}, ecc. Strings of the
form namelsscring2 are named entries. The String scring2

replaces all occurrences of the formal paramster {name2) in
the directive file.

I# both positional entries and namsd entries appear, then all
the positicnal entries must precede the named entries.

If there :is no string specified for a formal parameter, then
the null string is substituted for the formal parameter.

(See Sections 5.2.2 and 5.3.2 for an example of formal
parameter string replacement on the host system.)

The SYMBMAP switch, if used, must be used in combination with
che MAP switch to produce a map file. The contents of the map
£ile depends on the other map file switches used in
combination with this switch and the MAP switch. By default,
this switch will produce a map file consisting of: 1) a list
of :-nput switches and direct:i:ves, 2) an allocation map
(containing nodes, modules, contrel sections, and excernal
symbols), and 3) an alphabetical symbols listing (containing
external symbols sorted in alphabecical order). The name of

the map file 18 derived according =o the process explained in
the MAP swaitch description (above) .

ﬂmmm B-28

TLD EXTENDED MEMORY LINKER 1750A-L§K-§!1-’

HosT DEPENDENCIES

The NOSYMEMAP switch, will not produce an alphabetical symbols
listing in the map file.

The other map file switches are: ALOCMAP, NOALOCMAP, NODZMAP,
NONODEMAP, MODMAP, and NOMODMAP.

WARNING

This switch lists or suppresses warning messages. NOWARNING
suppresses warning and informaticn messages.

5.2 VAX (VMS) HosT

This section provides descripticns for all host dependencies except for
Directave File host dependencies. They are discussed in Chapter 4.

5.2.1 VAX (VMS) ExecuTzON

TIDlnk running under the VAX/VMS cperating system is invoked by issuing
the following command.

$ LNKTLD(file-switch-list)
or
S LNK{file-swaicch-list)

if the abbreviated form is supported.

The syntax cf a switch is a slash (/) followed by an option switch name
and, for certain switches, an equal sign (=), or interchangeably a colon
(:}), followed by a value or list of values. If a 1list of values 1is

used, the list .s enclosed in parentheses and the individual values are
separated by commas.

/swicch-name{svalue(,...)}
or
/switch-name{:value,...))}

APPENDIX C
APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix, are
provided by the customer. Unless specifically noted otherwise, references in
this Appendix are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are not a part
of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767 ;

type LONG_INTEGER is range -2 147 483 648 .. 2 147 483 647 ;

type FLOAT is digits 6 range -1.70141E+38 .. 1.70141E+38;

type LONG FLOAT is digits 9 range -1,.70141183E+38 .. 1.70141183E+38;
type DURATION is delta 2.0**(-14) range -86400.0 .. 86400.0 ;

C-1

APPENDIX F

The Ada language definition allows for certain machine_dependencies in a
controlled manner. No machine-dependent syntax or semantic extensions or
restrictions are allowed. The only allowed implementation-dependencies
correspond to implementatcn-dependent pragmas and attributes, certain
machine-dependent conventions, as mentioned in chapter 13 of the

MIL-STD-1815A; and certain allowed restrictions on representation
clauses.

The full definition of the implementation-dependent characteristics of

the TLD VAX/MIL-STD-1750A Ada Compiler System is presented in this
section.

TLD ADA COMPILER 1750A-AgA-Zg

M1L-STp-1750A BARE MACHINE TARGET COMPILER

STACK=stack_size
STACK=2000 -- default

The number of words reserved for the program’s stack is provided by
the STACK switch. The parameter stack size is a hexadecimal
number. Stack space is allocated from the heap.

ALK also produces the files described below.
o main prog.INC

This file is created by the Ada Compiler during the elaboration
step. Each line specifies an object file to be "included" in the
linker directive file. (Run time library units are not included).

o main prog$ELAB.OBJ
o main prog$ELAB.LIS

These files contain the relocatable object and listing for the
elaboration subprogram. The file name is formed from the main
program name appended by the string "$ELAB". However, if the
length of the maximum host file name is exceeded by appending this
string, then the string replaces characters at the end of the main
program name.

For example:
$ ALK TEST/STACK=4000/INC=MY_ ASM.OBJ

ALK invokes the Ada Compiler with the "/ELABORATE" switch to compile
elaborations and generate the .INC and .0OBJ files. After successful
completion of the elaboration step, ALK generates a linker directive
file from data specified by the STACK switch, the .INC file, and files
specified by the INCLUDE switch. ALK will then invoke the linker to
produce the program load module (.LDM), the program map file (.MAP),
and the debugger information files (.DBG, .TRB, and .SYM).

5.2 LRM CORRESPONDENCE

This section identifies correspondences between features of the TLDacs
and sections of the Ada Language Reference Manual (LRM).

5.2.1 LRM CH.1 - INTRODUCTION

The formal standards for the Ada Programming Language are provided in
the Ada Langquage Reference Manual (LRM), ANSI/MIL-STD-1815A. TLD
Systems has developed TLDacs in the spirit of those standards.

TLD ADA COMPILER 1750A-A?A-2$

MIL-STtp-1750A BARE MACHINE TARGET COMPILER

The machine dependencies permitted by the Ada language are identified
in LRM Appendix F. No machine dependent syntax, semantic¢ extensions,
or restrictions are allowed. The only acceptable implementation
dependencies are pragmas and attributes, the machine dependent
conventions explained in LRM Chapter 13, and scme restrictions on
representation clauses.

TLD Systems has developed implementation-dependent software to
specifically conform to these restrictions and | has developed
implementation-independent pragmas and attributes in the spirit of the
LRM. This software is described, below, in individual discussions that
follow the topical order (within chapters and appendices) of the LRM.
For a detailed description of the Run Time environment, refer to the
Reference Document for the TLD Ada Run Time System.

5.2.2 LRM CH.2 - LeExzcAL ELEMENTS

The items described in this section correspond to the standards in
Chapter 2 of the LRM.

The following limits, capacities, and restrictions are imposed by
the Ada compiler implementation:

The maximum number of nesting levels for procedures is 10. There
is no limit to nesting of ifs, loops, cases, declare blocks, select
and accept statements.

The maximum number of lexical elements within a language statement,
declaration or pragma is not explicitly limited, but limited
depending on the combination of Ada constructs coded.

The maximum number of procedures per compilation unit is 500.

The maximum number of levels of nesting of INCLUDE files is 10.
There is no limit on the total number of INCLUDEd or WITHed files.

Approximately 2000 user-defined elements are allowed in a
compilation unit. The exact limit depends upon the characteristics
of the elements.

A maximum of S00 severe (or more serious) diagnostic messages are
allowed for a compilation.

The range of status values allowed is the same as the range of
integer values, -32_768 .. 32_767.

The maximum number of parameters in a procedure call is 20.

c-4

TLD ADA COMPILER 1750A-A?A-Zg

M1L-STD-1750A BARE MACHINE TARGET COMPILER

The maximum number of characters in a name is 120.

The maximum source line length is 120 characters.

The maximum string literal length is 120 characters.

The source line terminator is determined by the editor used.

Name characters have external representation.

5.2.3 LRM CH.3 - DecLARATIONS AND TYPES

The items described in this section correspond to the standards in
Chapter 3 of the LRM.

Number declarations are not assigned addresses and their names are
not permitted as a prefix to the ‘address attribute.

Objects are allocated by the compiler to occupy one or more 16 bit
words. Only in the presence of pragma Pack or record representation
clauses are objects allocated to less than a word.

*Address can be applied to a constant object to return the address
of the constant object.

Except for access objects, uninitialized objects contain an
undefined value. An attempt to reference the wvalue of an
uninitialized object is not detected.

The maximum number of enumeration literals of all types is limited
only by available symbol table space.

The predefined integer types are:

Integer range -32_768 .. 32_767 and is implemented as single
precision fixed point data.

Long_Integer range -2_147_483_648 .. 2_147_483_647 and
implemented as double precision data.

Short_Integer is not supported.

System.Min_Int is -2_147_4B3_648.
System.Max _Int is 2_147_483_647.

TLD ADA COMPILER 1750A-A|5)A-2§

MiL-STD-1750A BARE MACHINE TARGET COMPILER

The predefined real types are:

Float digits 6.
Long_Float digits 9.
Short_Float is not presently supported.

System.Max_Digits is presently 9 and is implemented as 48-bit
floating point data.

There is no predefined fixed point type name. Fixed point types
are implemented as single or double precision data depending upon
the range of values by which the type is constrained.

Index constraints and other address values (e.g., access types) are
limited to an unsigned range of 0 .. 65_535 or a signed range of
-32_768 .. 32_767.

The maximum array size is limited to the size of wvirtual
memory: 64K words.

The maximum string length is 32_767.

Access objects are implemented as an unzigned 16 bit integer. The
access literal Null is implemented as one word of 0.

There is no 1limit on the number of dimensions of an array type.
Array types are passed as parameters opposite unconstrained formal
parameters using a 3 word dope vector illustrated below:

+
Word address of first element |
Lower bound value of first dimension |
Upper bound value of first dimension |

+

+—

Additional dimension bounds follow immediately for arrays with more
than one dimension.

Packed strings are generated instead of unpacked strings.

C-6

MiL-STp-1750A BARE MACHINE TARGET COMPILER

TLD ADA COMPILER 1750A-A?A-§g

5.2.4 LRM CH.4 - NaMes AND EXPRESSIONS

The items described in this section correspond to the standards in
Chapter 4 of the LRM.

Machine_Overflows is True.

Pragma Controlled has no effect since garbage collection is never
performed.

5.2.5 LRM CH.5 - STATEMENTS

The items described in this section correspond to the standards in
Chapter 5 of the LRM.

The maximum number of statements in an Ada source program is
undefined and limited only by symbol table space.

Unless they are quite sparse, Case statements are allocated as
indexed jump vectors and therefore, are very fast.

Loop statements with a "for" implementation scheme are implemented
most efficiently if the range is in reverse and down to zero.

Data declared in block statements is elaborated as part of its
containing scope.

5.2.6 LRM CH.6 - SuBPROGRAMS

The items described in this section correspond to the standards in
Chapter 6 of the LRM.

Arrays, records, and task types are passed by reference.

5.2.7 LRM CH.7 - PAckAGES

The items described in this section correspond to the standards in
Chapter 7 of the LRM.

Package elaboration is performed dynamically, permitting a warm
restart without reloading the program.

TLD ADA COMPILER 1750A-A?A-%§

M1L-STp-1750A BARE MACHINE TARGET COMPILER

5.2.8 LRM CH.8 - VisiBILITY RULES

Not applicable.

NOTE: TLD has not produced a modification of the item(s) described in
this LRM section or documentation parallel to the information in this
LRM section.

5.2.9 LRM CH.9 - Tasks

The items described in this section correspond to the standards in
Chapter 9 of the LRM.

Task objects are implemented as access types pointing to a Process
Control Block (PCB).

Type Time in package Calendar is declared as a record containing
two double precision integer values: the date in days and the real
time clock.

Pragma Priority is supported with a range defined in System_.Ada.

Pragma Shared is supported for scalar objects.

Package Calendar is described in the Reference Document for the TLD
Ada Run Time System, 1750A Target.

5.2.10 LRM CH.10 - ProGRAM STRUCTURE/COMPILATION

Ada Program Library processing is described in The Reference Document
£ he T Libr 750A

Multiple Ada Program Libraries are supported with each 1library
containing an optional ancestor library. The predefined packages are
contained in the TLD standard library, 17S50A.LIB

5.2.11 LRM CH.11 - EXCEPTIONS

Exception handling is described in the Reference Document for the TLD
n Tim m, 1750A Tar

TLD ADA COMPILER 1750A-A?A-§g

M1L-STD-1750A BARE MACHINE TARGET COMPILER

Exception objects are allocated access objects to the exception name
string. The implementation of exceptions is described in the Reference
Document for the T Ada Run Time S m, 1750A T

Exceptions are implemented by the TLD Ada Compiler System to take
advantage of the normal policy in real time computer system design to
reserve 50% of the duty cycle. By executing a small number of
instructions in the prologue of a procedure or block containing an
exception handler, a branch may be taken, at the occurrence of an
exception, directly to a handler rather than performing the time
consuming code of unwinding procedure calls and stack frames. The
philosophy taken is that an exception signals an exceptional condition,
perhaps a serious one involving recovery or reconfiguration, and that
quick response in this situation is more important and worth the small
throughput tradeoff in a real time environment.

5.2.12 LRM CH.12 - GeENeErIC UNITS

Generic implementation is described in the Reference Document for the
TLD Ada Run Time System, 175032 Target.

A single generic instance is generated for a generic body, by default.
Generic specifications and bodies need not be compiled together nor
need a body be compiled prior to the compilation of an instantiation.
Because of the single expansion, this implementation of generics tends
to be more favorable of space savings. To achieve this tradeoff, the
instantiations must, by nature, be more gener... and are, therefore,
somewhat less efficient timewise. Refer to pragma INSTANTIATE for more
information on controlling instantiation of a generic.

5.2.13 LRM CH.13 - CrLAuSeES/IMPLEMENTATION

Package System definitions are described in Section 5.2.B of this
manual.

Representation clause support and restrictions are generally described
in Section 5.2.F.

TLD ADA COMPILER 1750A-A?A-%g

MIL-STD-1750A BARE MACHINE TARGET COMPILER

Additional Information
A comprehensive Machine_Code package is provided and supported.
Unchecked_Deallocation and Unchecked_Conversion are supported.

The implementation-dependent attributes are all supported except
'Storage_Size for an access type.

Procedure Unchecked Deallocation (LRM 13.10.1)

Function Unchecked_Conversion (LRM 13.10.2)

5.2.14 LRM CH.14 - INPuT/OuTPUT

The items described in this section correspond to the standards in
Chapter 14 of the LRM.

File I/0 operations are not supported.

Input/output packages and associated operations are explained in
Section 5.2.F of this manual.

5.2.A LRM App.A - PREDEFINED LANGUAGE ATTRIBUTES

The items referenced in this section correspond to the standards in
Appendix A of the LRM.

All LRM-defined attributes are supported by the TLDacs.

5.2.B LRM App.B - PREDEFINED LANGUAGE PRAGMAS

The items described in this section correspond to the standards in
Appendix B of the LRM. Any differences from the implementation
described in the LRM are listed below.

PRAGMA CONTROLLED

This pragma is not supported.

c-10

TLD ADA COMPILER 1750A-AI5)A— %(4:

MIL-STD-1750A BARE MACHINE TARGET COMPILER

PRAGMA ELABORATE

This pragma is implemented as described in the LRM.

PRAGMA INLINE

This pragma is implemented as described in the LRM.

PRAGMA INTERFACE

pragma interface (language_name, Ada_entity_name(,string});
pragma interface (system, Ada_entity name, BEX number, R2 value);
pragma interface (indirect, name) ;

pragma interface (direct, name);

pragma interface (MIC, subprogram_name) ;

Pragma Interface allows references to subprograms and objects that
are defined by a foreign mocdule coded in a language other than Ada.

The following interface languages are supported:

o System for producing a call obeying the standard calling
conventions except that the BEX instruction is used to produce a
software interrupt into the kernel supervisor mode.

o Assembly for calling Assembly language routines;

© MIL-STD-1750A for defining built-in instruction procedures.

o C for calling C coded routines.

If the Ada_entity_name is a subprogram, LRM rules apply to the
pragma placement. Pragma Interface may be applied to overloaded
subprogram names. In this case, pragma Interface applies to all
preceding subprogram declarations if those declarations are not the
target of another pragma Interface.

For example:

package Test is
procedure P1l;
pragma Interface (Assembly, P1, "Asm_Routine_1");
procedure Pl (x:Long_Float);

pragma Interface (Assembly, P1l, "Asm_Routine_2");
end Test;

In the example above, the first pragma Interface applies to the
first declaration of procedure Pl. The second pragma Interface
applies to only the second declaration of procedure Pl because the
first declaration of Pl has already been the object of a preceding
pragma Interface.

c-11

TLD ADA COMPILER 1750A-Al5)A-21(5:

MiL-STD-1750A BARE MACHINE TARGET COMPILER

If the Ada_Entity Name is an object, the pragma must be placed
within the same declarative region as the declaration, after the
declaration of the object, and before any reference to the object.

If the third parameter is omitted, the Ada name is used as the name
of the external entity and the resolution of its address is assumed
to be satisfied at link time by a corresponding named entry point
in a foreign language module.

JIf the optional string parameter is present, the extermal name
provided to the linker for address resolution is the contents of
the string. Therefore, this string must represent an entry point
in another module and must conform to the conventions of the linker
being used.

An object designated in an Interface pragma is not allocated any
space in the compilation wunit containing the pragma. Its
allocation and location are assumed to be the responsibility of the
defining module.

When pragma Interface has the system parameter, it tells the
compiler what values apply to BEX and R2 when the ada_entity_name
is used.

When the /INDIRECT option is used, the specified procedure,
function, or package is called indirectly.

When the /DIRECT option is used, the specified procedure, function,
or package elaboration code is called directly. This pragma
overrides the /INDIRECT switch.

Pragma Interface with the MIC option is ignored unless the command
line switches /TARGET=1750A and /MODEL=VAMP appear. The Ada
Compiler marks the subprogram name specified as a VAMP microcode
subprogram. If a call is made to a subprogram of this type, a
diagnostic is issued. An attribute reference may be made to these
subprograms with the attribute designator ‘ADDRESS. This reference
is implemented as a reference to an import symbol whose value is to
be satisfied by TLDlnk.

PRAGMA LIST
pragma List (on | off);

Compiler switch /LIST must be selected for the pragma List to be
effective.

Cc-12

TLD ADA COMPILER 1750A-AEA-§E

MiL-STD-1750A BARE MACHINE TARGET COMPILER

PRAGMA MEMORY_SIZE
pragma Memory_Size (numeric_literal);

This pragma is not supported. This number is declared in package
System.

PRAGMA OPTIMIZE

This pragma is not supported. Compiler switches control compiler
optimization.

PRAGMA PACK

This pragma is implemented as defined in the LRM.

PRAGMA PAGE

This pragma is implemented as defined in the LRM.

PRAGMA PRIORITY

This pragma is implemented as defined in the LRM. Priority
contains a range defined in System_.Ada.

PRAGMA SHARED

This pragma is implemented as defined in the LRM. This pragma may
be applied only to scalar objects.

PRAGMA STORAGE_UNIT
pragma Storage_Unit (numeric_literal) ;

This pragma is not supported. This number is declared in package
System and has 16 bits per word.

C-13

TLD ADA COMPILER 1750A-A?A-%$

MIL-STD-1750A BARE MACHINE TARGET COMPILER

PRAGMA SUPPRESS

pragma Suppress (access_check) ;
pragma Suppress (all_checks);

The all_checks parameter eliminates all run time checks with a
single pragma. In addition to the pragma, a compiler switch
permits control of run time check suppression by command line
option, eliminating the need for source changes.

pragma Suppress (discriminant_check) ;
pragma Suppress (division_check) ;
pragma Suppress (elaboration_check);
pragma Suppress (exception_info);

Suppressing exception_info eliminates data and code used to provide
symbolic debug information in the event of an unhandled exception.

pragma Suppress (index_check) ;
pragma Suppress (length_check) ;
pragma Suppress (range_check) ;
pragma Suppress (overflow_check) ;
pragma Suppress (storage_check) ;

PRAGMA SYSTEM_NAME
pragma System_Name (enumeration literal);

This pragma is not supported. Instead, compiler option is used to
select the target system and target Ada library for compilation.

5.2.C LRM App.C-PREDEFINED LANGUAGE ENVIRONMENT

The items described in this section correspond to the standards in
Appendix C of the LRM.

PACKAGE STANDARD

The £following are predefined types of package Standard that are
intrinsic to the compiler:

type Boolean is (False, True);

Cc-14

TLD ADA COMPILER 1750A-A?A-§g

M1L-STD-1750A BARE MACHINE TARGET COMPILER

-- The predefined relational operators for this type are as follows:

function "=" {Left, Right : Boolean) return Boolean;
function "/=" (Left, Right : Boolean) return Boolean;
function "<" (Left, Right : Boolean) return Boolean;
function "<=" (Left, Right : Boolean) return Boolean;
function ">" (Left, Right : Boolean) return Boolean;
function ">=" (Left, Right : Boolean) return Boolean;

-- The predefined logical operators and the predefined logical
-- negation are as follows:

function "and" (Left, Right : Boolean) return Boolean;

function "oxr" (Left, Right : Boolean) return Boolean;
function "xor" (Left, Right : Boolean) return Boolean;
function "not" (Right : Boolean) return Boolean;

-- The universal type universal_integer is predefined.
-- type Short_Integer is not implemented for 1750A.

type Integer is range -2**15 ,, 2%*15-1;
-- : range -32768 .. 32767

-- The predefined operators for this type are as follows:

function "=" (Left, Right : Integer) return Boolean;
function "/=" (Left, Right : Integer) return Boolean;
function "<«" (Left, Right : Integer) return Boolean;
function "<=" (Left, Right : Integer) return Boolean;
function ">" (Left, Right : Integer) return Boolean;
function ">=" (Left, Right : Integer) return Boolean;
function "+" (Right : Integer) return Integer;

function "-" (Right : Integer) return Integer;

function "abs" (Right : Integer) return Integer;

function "+" (Left, Right : Integer) return Integer;
function "-" (Left, Right : Integer) return Integer;
function "*" (Left, Right : Integer) return Integer;
function "/" (Left, Right : Integer) return Integer;

function "rem" (Left, Right : Integer) return Integer;
function "mod" (Left, Right : Integer) return Integer;

function "*** (Left : Integer, Right : Integer) return Integer;

type Long_Integer is range -2+*#%31 .. 2w%+#31-1;
-- : range -2,147,483,648 .. 2,147,483,647

-- The predefined operators for this type are as follows:

¢

C-15

TLD ADA COMPILER

M1IL-STD-1750A BARE MACHINE TARGET COMPILER

function
function
function
function
function
function

function
function
function

function
function
function
function
function
function

function

-- The universal type universal_real is predefined.

-- type Short_Float is not implemented for 1750A.

non
n/=n
Nen
Nt
nyn

Ll

"+II
w_n

1] abs n

naw
n_mn

Hat
n/n
"rem"
" mod "

LK X 21

(Left,
(Left,
(Left,
(Left,
(Left,
(Left,

(Right
(Right
(Right

(Left,
(Left,
(Left,
(Left,
(Left,
(Left,

(Left

Right
Right
Right
Right
Right
Right

Long_Integer) return Long_Integer;
Long_Integer) return Long_Integer;
Long_lInteger) return Long_Integer;

Right
Right
Right
Right
Right
Right

Long_Integer)

: Long_ Integer)
: Long_Integer)

Long_Integer)
Long_Integer)
Long_Integer)

: Long_Integer)
: Long_Integer)
: Long_Integer)

Long_Integer)
Long_Integer)
Long_Integer)

: Long_Integer, Right

return Long_Integer;

type Float is digits 6 range -1.70141E+38

-- The predefined operators for this type are as follows:

function
function
function
function
function
function

function
function
function

function
function
function
function

function

non
n/="
et
Nt
nyn

" >=l'

nyn
n_n

"abs"

ngn
non

LR A

n/n

LR X A

type Long_Float

(Left,
(Left,
(Left,
(Left,
(Left,
(Left,

(Right
(Right
(Right

(Left,
(Left,
(Left,
(Left,

(Left

Right
Right
Right
Right
Right
Right

Float)
Float)
Float)
Float)
Float)
Float)

return
return
return
return
return
return

1750A-ADA-2C
5-19

Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean;

return
return
return
return
return
return

return
return
return
return
return
return

Long_Integer;
Long_Integer;
Long_Integer;
Long_Integer;
Long_Integer;
Long_Integer;

Integer)

1.70141E+38;

Boolean;
Boolean;
Boolean;
Boolean;
Boolean;
Boolean;

Float) return Float;
: Float) returm Float;
Float) return Float;

Right Float)
Right Float)
Right Float)
Right Float)

Float, Right

return Float;
return Float;
return Float;
return Float;

Integer) return Float;

is digits 9 range -1.70141183E+38

c-16

1.70141183E+38;

TLD ADA COMPILER 1750A-AI5)A-%8

MIL-STp-1750A BARE MACHINE TARGET COMPILER

-- The predefined operators for this type are as follows:

function "=" (Left, Right : Long_Float) return Boolean;
function "/=" (Left, Right : Long_Float) return Boolean;
function "< (Left, Right : Long_Float) return Boolean;
function "<=" (Left, Right : Long_Float) return Boolean;
function ">" (Left, Right : Long_Float) return Boolean;
function ">=" (Left, Right : Long_Float) return Boolean;
function "+" (Right : Long_Float) return Long_Float;
function "-" (Right : Long_Float) return Long_Float;
function "abs" (Right : Long_Float) return Long_Float;
function "+" (Left, Right : Long_Float) return Long_Float;
function "-" (Left, Right : Long_Float) return Long_Float;
function "*" (Left, Right : Long_Float) return Long_Float;
function "/ (Left, Right : Long_Float) return Long_Float;
function "*w*" (Left : Long_Float, Right : Integer)

return Long_ Float;
-- The following operators are predefined for universal types:

function "*" (Left : universal_integer, Right : universal_real)
return universal_real;

function "*" (Left : universal_real, Right : universal_integer)
return universal_real;

function "/" (Left : universal_real, Right : universal_integer)
return universal_real;

-- The type universal_fixed is predefined. The only operators
-- for this type are:

function "*" (Left : any_fixed point_tyge,

Right : any fixed_point_type) return universal_fixed;
function "/" (Left : any_fixed point_type,

Right : any_fixed_point_type) return universal_fixed;

type Character is

(nul, soh, stx, etx, eot, eng, ack, bel,
bs, ht, 1f, ~vt, ££f, c¢r, 80O, 8Bi,
dle, dcil, dec2, dc3, dc4, nak, syn, etb,
can, em, sub, esc, fs, gs, rs, us,

‘o, I!I' "'1 I#l' ISI’ I*l’ r&r, rme
r(r’ l)l' l*l' I+I' '1 I’ I-l' '." r/!l
:0:, 11" 121’ :3:' :4:' 15r' '6', 171'
'8', 191' I:I' l;l' I<I' P I>Il l?I,

[

C-17

TLD ADA COMPILER

MIL-STD-1750A BARE MACHINE TARGET COMPILER

‘@', 'A’, 'B’, 'C’', 'D', 'E', 'F’', 'G’,
'g’, '1’, '3’, 'K, ‘'L, ‘M, 'N’', 'O,
'P', 'Q’, 'R', 'S", 'T’, 'U’, Y, WY,
lxr' IYI' IZI' l[ll ’ I' I]I’ [Rl I-I'
t,', 'a’, 'b’', 'e’, rgr, ‘er, 'fr, rg’,
lhl' Iil’ Ijl' lkl’ 11:’ Iml’ InI’ Iol'
‘p’, 'q’, 'x’, 's8’, 't’, 'u’, 'v', 'w,
‘x’, lyl' 'z, l{l’ III’ l}l' Vet del);

for Character use
nul, soh, stx, etx, eot, enq, ack, bel,

(0, 1, 2, 3, 4, S, 6, 7,
bs, ht, 1f, vt, ff, cr, so, si,

8, 9, 110, 11, 12, 13, 14, 15,
dle, dcl, dc2, dc3, dc4, nak, syn, etb,
ls, 17, 18, 19, 20, 21, 22, 23,
can, em, sub, esc, fs8, gs, rs, us,
24, 25, 26, 27, 28, 29, 30, 31,
S A Y 1 '8, 'Y, &', ',
32, 33, 34, 35, 36, 37, 38, 39,
'(’I ,)'1 a4 '*’r 'r ': ’-’l '-’r ’/'1
40, 41, 42, 43, 44, 45, 46, 47,
rQ’, '1', '2', '37, "4, !5t rgr, 170,
48, 49, 50, 51, 52, 53, 54, 55,
rg8r, 19, rt rer rgr e, st 1?4,
s6, 57, 58, 59, 60, 61, 62, 63,
‘'@’, 'A', 'B’, 'C', 'D', 'E’', 'F', 'G',
64, 65, 66, 67, 68, 695, 70, 71,
'H*, 'I', *'J', 'K, 'L’ 'Mf, 'N’', 'O,
72, 73, 74, 175, 76, 77, 78, 179,
‘P', 'Q’, 'R’, 'S’', 'T rgr, 'V, WY,
8o, 81, 82, 83, 84, 85, 86, 187,
X, 'Y, rZ, [, 0, v];' (XX I—l’
88, 89, 90, 91, 92, 93, 94, 95,
r,r, 'a’, 'b’, 'c’, 'd’, rer, £, 'g’,
%6, 97, 98, 299, 100, 101, 102, 103,
‘h', :i:, Ijll ‘'k’, '1’, 'm’', 'n’', 'o’,
104, 105, 106, 107, 108, 109, 110, 111,
‘p', ‘q’, ‘r’, 's’', ‘'t’, ‘u’, ‘v, 'w,
112, 113, 114, 115, 116, 117, 118, 119,
"x', 'Y', 'z, I{I’ rlr’ I}I’ tet del
120, 121, 122, 123, 124, 125, 126, 127);

1750A-ADA-2C
5 -21

-- The predefined operators for the type Character are the

-- same as for any enumeration type.

c-18

TLD ADA COMPILER

MIL-STD-1750A BARE MACHINE TARGET COMPILER

1750A-ADA-2C
5 - 22

The following are implementation-defined types of package Standard:

-- The following are control characters:

NUL: constant Character := Character’Val (0);
SOH: constant Character := Character’Val(l);
STX: constant Character := Charactexr’Val(2);
ETX: constant Character := Character’val(3);
EOT: constant Character := Character’Val (4);
ENQ: constant Character := Character’Val(5);
ACK: constant Character := Character’Val (6);
BEL: constant Character := Character’Val(7);
BS : constant Character := Character’Val(8s);
HT : constant Character := Character’Val(9);
LF : constant Character := Character’Val(10);
VT : constant Character := Character’'Val(ll);
FF : constant Character := Character’Val(12);
CR : constant Character := Character’Val(13);
SO : constant Character := Character’Val(l4);
SI : constant Character := Character’Val (15);
DLE: constant Character := Character’Val(1l6);
DCl: constant Character := Character’val(l17);
DC2: constant Character := Character’Val(18);
DC3: constant Character := Character’Vval(19);
DC4: constant Character := Character’Val(20);
NAK: constant Character := Character’val(21);
SYN: constant Character := Character’Val (22);
ETB: constant Character := Character’val(23);
CAN: constant Character := Character’Val (24);
EM : constant Character := Character’Val (25);
SUB: constant Character := Character’Val(26);
ESC: constant Character := Character’Vval (27);
FS : constant Character := Character’Val (28);
GS : constant Character := Character’Val (29);
RS : constant Character := Character’val (30);
US : constant Character := Character’Vval (31);
DEL: constant Character := Charactexr’Val(i127);

-- The following are other

characters:

Exclam constant Character := ’!’;
Quotation constant Character := '"’;
Sharp constant Character := '#’;
Dollar constant Character := ’$’;
Percent constant Character := '%’;
Ampersand constant Character := '&’;
Colon constant Character := ':’;
Semicolon constant Character := ';’;
Query constant Character := '?’;

c-19

TLD ADA COMPILER 1750A-A[5)A-22§

MiL-STD-1750A BARE MACHINE TARGET COMPILER

At_Sign : constant Character := ‘@’;

L_Bracket : constant Character := ' [’;

Back_Slash : constant Character := ' ’;

R_Bracket : constant Character := ‘]’;

Circumflex : constant Character := '*’;

Underline : constant Character := ’_’;

Grave : constant Character := ’'‘’;

L Brace : constant Character := '{’;

Bar : constant Character := ‘|’;

R_Brace : constant Character := ’}’;

Tilde : constant Character := '~';

Lc_A: constant Character := ‘a’; Lc_N: constant Character := ’‘n’
Lc_B: constant Character := ’'b’; Lc_O: constant Character := ‘o’
Le_C: constant Character := '¢’; Lc_P: constant Character := ‘p’
Lc_D: constant Character := 'd’; Lc_Q: constant Character := ‘q’
Lc_E: constant Character := ’‘e’; Lec_R: constant Character := 'r’
Lc_F: constant Character := '£’; Lc_S: constant Character := ‘s’
Lc_G: constant Character : 'g’; Lc_T: constant Character := 't
Lc_H: constant Character := ‘h’; Lc_U: constant Character := ’'u’
Lc_I: constant Character := ‘i’; Lc_V: constant Character := ‘v’
Lc_J: constant Character := ’‘j’; Lc_W: constant Character := 'w’
Lc_K: constant Character := 'k’; Lc_X: constant Character := ’'x’
Lc_L: constant Character := 'l’; Lc_Y: constant Character := 'y’
Lc_M: constant Character := 'm’; Lc_Z: constant Character := 'z’

-- The following are predefined subtypes:

subtype Natural is Integer range 0..Integer’LAST;
subtype Positive is Integer range 1..Integer’LAST;

-- The following is a predefined string type:

type String is array(Positive range <>) of Character;
pragma Pack (String) ;

-- The predefined operators for this type are as follows:

function "=" (Left, Right : String) return Boolean;
function "/=" (Left, Right : String) return Boolean;
function "<" (Left, Right : String) return Boolean;
function "<=" (Left, Right : String) return Boolean;
function ">" (Left, Right : String) return Boolean;
function ">=" (Left, Right : String) return Boolean;
function "&" (Left, Right : String) return Boolean;
function "&" (Left, Right : String) return Boolean;
function "&" (Left, Right : String) return Boolean;
function "&" (Left, Right : String) return Boolean;

c-20

- W W wy

we We We we we ws W W

-

|

TLD ADA COMPILER 1750A-AEA-%E

MiL-STD-1750A BARE MACHINE TARGET COMPILER
type Duration is delta 2.0**(-14) range -86_400.0..86_400.0;
-- : 32 bits with 12 bits for fractional part.

-- The predefined operators for type Duration are the same as for any
-- fixed point type.

-- The following are predefined exceptions:

Constraint_Error : exception;
Numeric_Error : exception;
Program_Error : exception;
Storage_Error : exception;
Tasking_Error : exception;

5.2.D LRM Aprp.D - GLOSSARY

Not applicable.

5.2.E LRM App.E - SYNTAX SUMMARY

Refer to "Appendix B. Ada Language Syntax Cross Reference" for the TLD
cross-referenced expression of this information.

5.2.F LRM App.F - IMPLEMENTATION CHARACTERISTICS

The items described in this section correspond to the standards in
Appendix F of the LRM.

IMPLEMENTATION-DEPENDENT PRAGMAS
PRAGMA ATTRIBUTE

pragma Attribute (Attribute-Name=>Attribute-Value, -~
Item-Name{,...});

This pragma allows grouping of control sections with the specified
attribute.

If Item-Name is omitted, the specified attribute applies to all
control sections in the current module.

If Item-Name is Name’csect, the specified attribute applies to the
control section of the module containing Name. Name may be a
label, procedure, or data object.

TLD ADA COMPILER 1750A-A?A-%g

M1L-STD-1750A BARE MACHINE TARGET COMPILER

If Item-Name is Name’code, the specified attribute applies to the
code control section of the module containing Name.

If Item-Name is Name'data, the specified attribute applies to the
data control section of the module containing Name.

If Item-Name is Name’constant, the specified attribute applies to
the constant control section of the module containing Name.

No other form of Item-Name is allowed.
The linker directives GROUP and SET, described in Chapter 4 of the

Reference Document for the TLD Linker can refer to attributes in
pragma Attribute in the source file.

PRAGMA AUDIT
pragma Audit (Ada-name{,...});
This pragma causes an error message to be generated for the

compilation in which an Ada name, that is specified by this pragma,
is referenced. The Ada name may be a package, scope, data, etc.

PRAGMA COLLECT

pragma Collect (type_name, attribute);

The only <value presently permitted for attribute is "unmapped",
which tells the compiler to collect all objects and subtypes of

type_name into unmapped control sections. An unmapped control
section is allocated a physical memory not covered by a page
register. Unmapped control sections are accessed from a device by
DMA or by IBM GVSC extended instructions. See Section 3.2.3.1,
"Unmapped Control Sections," in the Reference Document for the TLD
Extende m Linker

PRAGMA COMPRESS
pragma Compress (subtype_name);

This pragma is similar to pragma Pack, but has subtly different
effects. Pragma Compress accepts one parameter: the name of the
subtype to compress. It is implemented to minimize the storage
requirements of subtypes when they are used within structures
(arrays and records). Pragma Compress is similar to pragma Pack in
that it reduces storage requirements for structures, and its use

Cc-22

TLD ADA COMPILER 1750A-A?A-%(6:

M1L-STp-1750A BARE MACHINE TARGET COMPILER
does not otherwise affect program operation. Pragma Compress
differs from pragma Pack in the following ways:

o Unlike pragma Pack, pragma Compress is applied to the subtypes
that are later used within a structure. It is pot used on the

structures themselves. It only affects structures that later
use the subtype; storage in stack frames and global data are
unaffected.

o Pragma Compress is applied to discrete subtypes only. It
cannot be used on types.

o Pragma Compress does not reduce storage to the bit-level. It
reduces storage to the nearest "natural machine size". This
increases total storage requirements, but minimizes the
performance impact for referencing a value.

For example:

subtype Small_Int is Integer range 0 .. 255;
pragma Compress(Small_Int);
type Num_Array is array (1 .. 1000) of Small_Int;

In this example, Small_Int will be reduced from a 16-bit object to
an unsigned 8-bit object when used in Num_Array.

If pragma Compress had not been used then Small_Int would be the
same size as Integer. This is because a subtype declaration should
not change the underlying object representation. A subtype
declaration should only impose tighter constraints on bounds. In
this manner a subtype does not incur any extra overhead (other than
its range checking), when compared with its base type. Pragma
Compress is used in those cases where the underlying representation
should change for the subtype, therefore:

o Small_Int is compatible with Integer. It may be used anywhere
an integer is allowed. This includes out and in out parameters
to subprograms.

© A Small_Int object is the same Bize as Integer when used by
itself. This minimizes run time overhead requirements for
single objects allocated in the stack or as global data.

o Small _Int is 8 bits when used within a record or an array.
This can dramatically reduce storage reqQuirements for large
structures. The access performance for compressed elements is
very near that of the un-compressed elements, but a slight
performance cost is incurred when the compressed value is
passed as an out or in out parameter to a subprogram.

C-23

TLD ADA COMPILER 1750A-AI5)A-%$

MIL-STD-1750A BARE MACHINE TARGET COMPILER

NOTE: Small_Int‘'s storage requirements could be reduced by
declaring it as a type rather than a subtype, however, Small_Int
would not be compatible with 1Integer, and this could cause
considerable problems for some users.

PRAGMA CONTROL_SECTION

pragma Control_Section (usect,unmapped, object name ~
{,object_name...});

This pragma identifies data objects that are to be put into
unmapped control sections. The first two parameters must be
"usect" and "unmapped." The remaining parameters are names of Ada
objects. An unmapped control section is allocated a physical
memory location not covered by page register. Unmapped control
sections are accessed from a device by DMA or by IBM GVSC extended
instructions. See Section 3.2.3.1, "Unmapped Control Sections," in
the Reference Document for the TLD Extended Memory Linker.

PRAGMA CONTIGUOUS
pragma Contiguous (type_name | object_name) ;

This pragma is used as a query to determine whether the compiler
has allocated the specified type of object in a contiguous block of
memory words.

The compiler generates a warning message if the allocation is
noncontiguous or is undetermined. The allocation is probably
noncontiguous when data structures have dynamically sized
components. The allocation is probably undetermined when
unresolved private types are forward type declarations.

This pragma provides information to the programmer about the
allocation scheme used by the compiler.

PRAGMA EXPORT
pragma Export (language name, ada_entity_name, {string});

Pragma Export is a complement to pragma Interface. Export directs

the compiler to make the ada_entity name available for reference by
a foreign language module. The language name parameter identifies

the language in which the module is coded.

Assembly is presently supported by Export. Ada and JOVIAL are
permitted and presently mean the same as Assembly. The semantics

TLD ADA COMPILER 1750A-AISJA-22(8:

MIL-STD-1750A BARE MACHINE TARGET COMPILER

of their use are subject to redefinition in future releases of
TLbada. Void may be used as the language_name to specify the
user’s language convention. As a result of specifying Void, the
Compiler will not allocate local stack space, will not perform a
stack check, and will not produce prologue and epilogue code. If
the optional third parameter, string, is used, the string provides
the name by which the entity may be referenced by the foreign
module. The contents of this string must conform to the
conventions for the indicated foreign language and the linker being
used. TLDada does not make any checks to determine whether these
conventions are obeyed.

Pragma Export supports only objects that have a static allocation
and subprograms. If the ada_entity name is a subprogram, this
Export must be placed in the same scope within the declarative
region. If it is an object, the ada_entity_name must follow the
object declaration.

NOTE: The user should be certain that the subprogram and object
are elaborated before the reference is made.

PRAGMA IF

pragma If (compile time_expression) ;
pragma Elsif (compile_time_expression);
pragma Else;

pragma End{ if};

These source directives may be used to enclose conditiocnally
compiled source to enhance program portability and configuration
adaptation. These directives may be located where language defined
pragmas, statements, or declarations are allowed. The source code
following these pragmas is compiled or ignored (similar to the
semantics of the corresponding Ada statements), depending upon
whether the compile time_expression is true or false,
respectively. The primary difference between these directives and
the corresponding Ada statements is that the directives may enclose
declarations and other pragmas.

NOTE: To use the pragma IF, ELSEIF, ELSE, or END, the /XTRA
switch must be used.

Cc-25

TLD ADA COMPILER 1750A-AI5)A-2C

MIL-STD-1750A BARE MACHINE TARGET COMPILER - 29

PRAGMA INCLUDE
pragma Include (file_path name_string) ;

This source directive in the form of a language pragma permits
inclusion of another source file in place of the pragma. This
pragma may occur any place a language defined pragma, statement, or
declaration may occur. This directive is used to facilitate source
program portability and configurability. If a partial
file path _name string is provided, the current default pathname is
used as a template. A file name must be provided.

NOTE: To use the pragma INCLUDE, the /XTRA switch must be used.

PRAGMA INSTANTIATE
pragma Instantiate (option{, name});

This pragma is used to control instantiation of a particular
generic.

To establish a default mode of instantiation for all generic
instantiations within the compilation, the following switch may be
entered on the TLDada command line and used instead of this pragma:

/instantiate=option

In either the pragma or switch, option instructs the Compiler to
instantiate generics in the manner specified, as described below:

single_body - a single body is used for all instantiations
macro - each instantiation produces a different body

In this pragma, name 1is the name of the generic to which this
pragma applies.

There are two basic forms for this pragma. The first form omits
the second parameter, is associated with a generic declaration, and
is permitted to occur only within a generic formal part (i.e.,
after "generic" but before "procedure", "function", or "package").
In this form, the pragma establishes the default mode of
instantiation for that particular generic.

The second form uses the second parameter, is associated with the
instantiation, and may appear anywhere in a declarative part except
within a generic formal part. This form specifies what mode is to
be used for the instantiation of the named generic which follows in
the s8cope in which the pragma appears. This form of the pragma
takes precedence over the first form.

TLD ADA COMPILER 1750A-A?A-§0C

MIL-STp-1750A BARE MACHINE TARGET COMPILER

In the following example, assume the following definiton:

generic

pragma instantiate (single_body) ; -- pragma 1
package G ..

end G;

generic

pragma instantiate (macro); -- pragma 2
package H .

end H;

is new G{(..
is new G{.
is new H(...
is new H{...

package
package
package
package

s we

~e

vnNwy

~e

pragma instantiate (macro, G); -- pragma 3

’

package E is new G(...);
package F is new G(...)

In the above example, packages A and B share the same body, due to
pragma 1. Packages C, D, E, ard F will be treated as macro
instantiation C and D because macro instantiation is the default
for H (due to pragma 2) and for E and F because they follow pragma
3.

In both the pragma and switch:

o Nested instantiations and nested generics are supported and
generics defined in library units are permitted.

o It is not possible to perform a macro instantiation for a
generic whose body has not yet been compiled.

In this pragma:

o It is also not possible to perform a macro instantiation
from inside a single-bodied instantiation, because the
macro instantiation requires information at compile time
which is only available to a single-bodied generic at
execution time.

c-27

TLD ADA COMPILER 1750A-A?A-§§

MIL-STD-1750A BARE MACHINE TARGET COMPILER

In the event of a conflict between the pragma and switch, the
switch takes precedence.

PRAGMA INTERFACE_NAME
pragma Interface_Name (Ada_entity_name, string);

This pragma takes a variable or subprogram name and a string to be
used by the Linker to reference the variable or subprogram. It has
the same effect as the optional third parameter to pragma
Interface.

PRAGMA INTERRUPT_KIND
pragma Interrupt_Kind (entry name, entry type{, duration});

An interrupt entry is treated as an "ordinary" entry in the absence
of pragma Interrupt_Kind. When pragma Interrupt_Kind is used, an
interrupt entry may be treated ~s a "conditional" or "timed" entry.

This pragma must appear in the task specification containing the
entry named and after the entry name is declared. Three
entry_types are possible: ordinary, timed, and conditional. The
optional parameter duration is applicable only to timed entries and
is the maximum time to wait for an accept.

For an ordinary entry, if the accept is not ready, the task is
queued. For a conditional entry, if the accept is not ready, the
interrupt is ignored. For a timed entry, if the accept is not
ready, the program waits for the period of time specified by the

duration. If the accept is not ready in that period, the interrupt
is ignored.

PRAGMA LOAD
pragma Load (literal_string);

This pragma makes the Compiler TLDada include a foreign object
(identified by the literal_string) into the link command.

c-28

M1L-STDp-1750A BARE MACHINE TARGET COMPILER 5 - 32
PRAGMA MONITOR
pragma Monitor;
The pragma Monitor can reduce tasking context overhead by
eliminating context switching. This pragma identifies invocation
by the compiler. With pragma Monitor, a simple procedure call is
used to invoke task entry.
Generally, pragma Monitor restricts the syntax of an Ada task,
limiting the number of operations the task performs and leading to

faster execution.

The following restrictions pertain to Ada constructs in monitor
tasks:

o Pragma Monitor must be in the task specification.

o Monitor tasks must only be declared in 1library-level,
non-generic packages.

o Monitor tasks may contain data declarations only within the
accept statement.

o A monitor task consists of an infinite loop containing one
select statement.

o The "when condition" is not allowed in the select alternative of
the select statement.

o The only selective wait alternative allowed in the select
statement is the accept alternative.

o0 All executable statements of a monitor task must occur within an
accept statement.

© Only one accept statement is allowed for each entry declared in
the task specification.

If a task body violates restrictions placed on monitor tasks, it is
identified as erroneous and the compilation fails.

C-29

TLD ADA COMPILER 1750A-A?A-%g

MIL-STD-1750A BARE MACHINE TARGET COMPILER

PRAGMA NO_DEFAULT_INITIALIZATION

pragma No_Default_Initialization;
pragma No_Default_Initialization (typename{,... });

The LRM requires initialization of certain Ada structures even if
no explicit initialization is included in the code. For example,
the LRM requires access_type objects to have an initial value of
"NULL." Pragma No_Default_Initialization prevents this default
initialization.

In addition, initialization declared in a type statement is
suppressed by this pragma.

TLD implementation of packed records or records with representation
clauses includes default initialization of filler bits, i.e., bits
within the allocated size of a variant that are not associated with
a record component for the variant. No_Default_Initialization
prevents this default initialization.

This pragma must be placed in the declarative region of the
package, before any declarations that require elaboration code.
The pragma remains in effect until the end of the compilation unit.

NOTE: To use the pragma, NO_DEFAULT_INITIALIZATION, the /XTRA

switch must be used. The use of this pragma may affect the
results of record comparisons and assignments.

PRAGMA NO_ELABORATION
pragma no_elaboration;
Pragma No_Elaboration is used to prevent the generation of
elaboration code for the containing scope. This pragma must be
placed in the declarative region of the affected scope before any

declaration that would otherwise produce elaboration code.

This pragma prevents the unnecessary initialization of packages

that are initialized by other non-Ada operations. Pragma
No_Elaboration is wused to maintain the Ada Run Time Library
{(TLDrtl) .

c-30

TLD ADA COMPILER 1750A-AgA-§4C

MIL-STD-1750A BARE MACHINE TARGET COMPILER

For example:

package Test is
Pragma No_Elaboration;
for Program Status_Word use
record at mod 8;
System_Mask at 0*WORD range 0..7;
Protection_Key at O*WORD range 10 .. 11; -- bits 8,9 unused

end record;
end Test;

In the above example, the No_Elaboration pragma, prevents the
generation of elaboration code for package Test since it contains
unused bits.

NOTE: To use the pragma, NO_ELABORATION, the /XTRA switch must

be used. The use of this pragma may affect the results of record
comparisons and assignments.

PRAGMA NO_ZERO
pragma No_Zero (record type_name) ;

If the named record type has "holes" between fields that are
normally initialized with zeroes, this pragma will suppress the
clearing of the holes. If the named record type has no "holes",
this pragma has no effect. When zeroing is disabled, comparisons
(equality and non-equality) of the named type are disallowed. The

use of this pragma can significantly reduce initialization time for
record objects.

PRAGMA PUT
pragma Put (value{, ...});

Pragma Put takes any number of arguments and writes their value to
standard output at compile time when encountered by the Compiler.
The arguments may be expressions of any string, enumeration,
integer type, or scalar expression (such as integer’size) whose
value is known at compile time. This pragma prints the values on
the output device without an ending carriage return; pragma

Put_Line is identical to this pragma, but adds a carriage return
after printing all of its arguments.

c-31

TLD ADA COMPILER 1750A-AI5)A-§g

MrL-STp-1750A BARE MACHINE TARGET COMPILER

This pragma is useful in conditionally-compiled code to alert the
programmer to problems that might not otherwise come to his
attention via an exception or a compile-time error.

This pragma may appear anywhere a pragma is allowed.

PRAGMA PUT_LINE

pragma Put_Line (value{, ...});

Pragma Put_Line takes any number of arguments and writes their
value to standard output at compile time when encountered by the
Compiler. The arguments may be expressions of any string,
enumeration, integer type, or scalar expression (such as
integer’size) whose wvalue is known at compile time. This pragma
prints the values on the output device and adds a carriage return
after printing all of its arguments; pragma Put is identical to

this pragma, but prints the values without an ending carriage
return.

This pragma is useful in conditionally-compiled code to alert the
programmer to problems that might not otherwise come to his
attention via an exception or a compile-time error.

This pragma may appear anywhere a pragma is allowed.

PRAGMA REGISTER

pragma Register (object_name, register_number);

This pragma allows limited register dedication to an object for the
purpose of loading registers with complex Ada expressions or
storing registers into complex operands within machine code
insertion subprograms. The Compiler dedicates the specified
register to the specified object until the end of the scope is
reached or until it is released through a call to the subroutine,
Unprotect, in the Machine_Code package. The object_name is the
name of the object to be dedicated to the register and
register_number is the register number (without the "R" prefix that
is valid for the particular target).

These objects may be used on the left or right side of an
assignment statement to load or store the register, respectively.

c-32

TLD ADA COMPILER 1750A-AI5)A-§(6:

M1L-STD-1750A BARE MACHINE TARGET COMPILER

PRAGMA TCB_EXTENSION
pragma TCB_Extension (value);

This pragma is used to extend the size of the Task Control Block on
the stack. It can be used only within a task specification. The
parameter passed to this program must be static and represents the
size to be extended in bytes.

PRAGMA WITHIN_PAGE
pragma Within_Page (type_name | object_name) ;

NOTE: The type name or object_name must have been previously
declared in the current declaration region and these declarations
must be in a static data context (i.e., in a package
specification or body that is not nested within any procedure or
function) .

This pragma instructs the compiler to allocate the specified
object, or each object of the specified type, as a contiguous block

of memory words that does not span any page boundaries (a page is
4096 words) .

The compiler generates a warning message if the allocation is
noncontiguous or not yet determined (see the description of pragma
Contiguous, above). Additionally, the compiler generates a warning
message if the pragma is in a nonstatic declarative region. If an
object exceeds 4096 words, it is allocated with an address at the
beginning of a page, but it spans one or more succeeding page
boundaries and a warning message is produced.

PRAGMA VOLATILE
pragma Volatile (variable_ simple_name) ;

This pragma performs the same function as Pragma Shared, however,

it also applies to composite types as well as Bscalar types or
access types.

C-33

TLD ADA COMPILER 1750A-A?A-%9

MIL-STD~1750A BARE MACHINE TARGET COMPILER
IMPLEMENTATION-DEPENDENT ATTRIBUTES

TASK_ID

The attribute 'Task_ID is used only with task cbjects. This
TLD-defined attribute returnms the actual system address of the task
object.

PACKAGE SYSTEM SPECIFICATION
The following declarations are defined in package System:
type operating_systems is (unix, netos, vms, os_x, msdos, bare);
type name is (none, ns16000, vax, af1750, z8002, z8001, gould,
pdpll, m68000, pe3200, caps, amdahl, i8086, 180286, 180386,
280000, ns32000, ibmsl, m68020, nebula, name_x, hp);
system_name: constant name := name’target;

os_name: constant operating_systems := operating_systems’system;

subtype priority is integer range 1..64; -- 1 is default
priority.

type address is range 0 .. 65535;
for address’size use 16;

type unsigned is range 0 .. 65535;
for address’size use 16;

type long_address is range 0 .. 16#007FFFFF#;

pragma put_line (’>’, ‘>’, ’'>’, ' ‘, pystem name, ‘' ‘', ‘/', ' ',
os_name, ' ', ‘'<’', '<’', '<');

-- Language Defined Constants

storage_unit: constant := 16;

memory_size: constant := €5_536;

min_int: constant := -2%%3]1;

max_int: constant := 2+%%31-1;

max_digits: constant := 9;

max_mantissa: constant := 31;

fine_delta: constant := 2.0%*(-31);

ticks_per_ second: constant := 10_000.0 -- Clock ticks = 100 msecs.
tick: constant := 1.0/ticks_per_second;
ticks_per_rtc: constant := 65_536;

null_address: constant address := 0;

Cc-34

TLD ADA COMPILER 1750A-A?A-§g

M1L-STD-1750A BARE MACHINE TARGET COMPILER

REPRESENTATION CLAUSES

Record representation clauses are supported to arrange record
components within a record. Record components may not be specified
to cross a word boundary unless they are arranged to encompass two
or more whole words. A record component of type record that has
record representation clause applied to it may be allocated only at
bit 0. Bits are numbered from left to right with bit 0 indicating
the sign bit.

When there are holes (unused bits in a record specification), the
compiler initializes the entire record to permit optimum assignment
and compares of the record structure. A one-time initialization of
these holes is beneficial because it allows block compares and/or
assignments to be used throughout the program. If this
"optimization" is not performed, record assignments and compares
would have to be performed one component at a time, degrading the
code. :

To avoid this initialization, the user should check to be certain
that no holes are left in the record structure. This may be done
by increasing the size of the objects adjacent to the hole or by
defining dummy record components that £ill the holes. If the
latter method is wused, any aggregates for the structure must
contain values for the holes as well as the "real" components.
Even with the extra components, this approach should optimize space
and speed in comparison to processing one component at a time.

If the component_clause of a record representation specification is
not in the same order as the component_list of the record
specification, the entire record is initialized, as indicated
above.

Address clauses are supported for variable objects and designate
the virtual address of the object. The Compiler System uses
address specification to access objects allocated by non-Ada means
and does not handle the clause as a request to allocate the object
at the indicated address. Address clauses are not supported for
subprograms, packages, tasks, or task entries.

The Ada Compiler supports a representation specification to
indicate a memory type attribute for user types and objects. The
new specification:

for Ada_type_or_object’'memory_type use { APC | MIXR |
GIXR | GLOK | SPE | LUT | PBM | PBMC};

may be used to identify Ada types or objects that are to be
allocated to particular memory types.

For addresses greater than 64K, logical addresses must be used.

C-35

TLD ADA COMPILER 1750A-A9A-%g

MiL-STp-1750A BARE MACHINE TARGET COMPILER

NOTE: Length clauses are supported for ‘Size applied to objects
other than task and access type objects and denote the number of
bits allocated to the object.

Length clauses are supported for ‘Storage_Size when applied to a
task type and denote the number of words of stack to be allocated
to the task.

Enumeration types that have an associated representaticn clause
cannot be passed as actual generic parameters for a generic
instantiation.

Enumeration representation clauses are supported for value ranges
of Integer’First to Integer’last.

PACKAGE MACHINE_CODE (LrRM 13.8)

The specification for this package is included in the
MACHINE_CODE_.ADA file.

CONVENTIONS FOR IMPLEMENTATION-GENERATED
NAMES DENOTING IMPLEMENTATION-DEPENDENT
COMPONENTS

The Compiler System defines no implementation dependent names for
compiler generated record components.

Two naming conventions are used by TLDacs. All visible run time
library subprograms and kernel services begin with the character
"A_". Global Run Time System data names begin with the characters
"A$". The unique name created by the compiler for overload
resolution is composed of the user name appended with "_$", plus
the first three characters of the compilation unit name, followed
by three digits representing the ordinal of the visible name within
the compilation wunit. The maximum 1length of this name is 128
characters.

c-36

TLD ADA COMPILER 1750A-ADA-2C
M1L-STD-1750A BARE MACHINE TARGET COMPILER 5 - 40
INTERPRETATION FOR EXPRESSIONS APPEARING

IN ADDRESS CLAUSES

Address expression values and type Address represent a location in
logical memory (the contents of the page register is not included
in the address). For objects, the address specifies a location
within the 64K word logical operand space. The ’‘Address attribute
applied to a subprogram represents a 16-bit word address within the
logical instruction space.

RESTRICTIONS ON UNCHECKED CONVERSIONS

Conversion of generic formal private types is not allowed.

IMPLEMENTATION-DEPENDENT CHARACTERISTICS
oF INPUT-OuTPUT PACKAGES

PACKAGE DIRECT_IO (LrRM 14.2.5)

PACKAGE IO_EXCEPTIONS (LRM 14.5)

PACKAGE LOW_LEVEL_IO (LRM 14.6)

PACKAGE SEQUENTIAL_IO (LRrRM 14.2.3)

Input-Output packages are described in the Reference Document for
the TLD Ada 1750A Run Time System.

PACKAGE TEXT_IO (LRM 14.3.10)

The following implementation-defined types are declared in Text_Io:

type Count is integer range 0 .. 511;
subtype Field is Integer range 0 .. 127;

c-37

TLD ADA COMPILER

MIL-STD-1750A BARE MACHINE TARGET COMPILER

1750A-ADA-2C
5 - 50

5.6.1 1750A PARAMETER VALUES

This chart provides sizes and values for 1750a parameters.

e . —— — — ———— —— ——— ————— — ——— T—— e i Sl S S— — —— ot ittt i, et S St .

Parameter
Integer
Long_Integer

Float

Binary Exponent
Mantissa
Signed Bit
Long_Float
Binary Exponent
Mantissa
Signed Bit
Fixed Point:

(single precision)
(double precision)

Access (Logical)
(Physical)

Boolean

Character

String

Array Descriptor
Address
Unsigned Integer
Float'’'first
Float'’last
Float’small
Float’'safe_small
Float'’large
Float’safe_large
Float'’epsilon
Float’'digits
Float’'mantissa
Float’'emax
Float’'safe_emax
Long_float’'first
Long_float’last
Long_float’'small

Long_float’safe_small

Long_float’large

Long_float’safe_large

Size Value (Range)
16 bits ~-32768..32767
32 bits -2,147,483,648..
+2,147,483,648
32 bits
8 bits
23 bits
1 bit 6 decimal digits
48 bits
8 bits
39 bits
1 bit 9 decimal digits

16 bits

32 bits

16 bits

23 bits

1 bit (LSB of 16 bits)
8 bits

Unconstrained array of
characters where a character
is 1 byte of data

48 bits

16 bits

16 bits

«1.70141E+38
1.70141E+38
2.58494E-26
2.35099E-38
1.93428E+25
2.12676E+37
9.53674E-07

-1.70141183E+38
1.70141183E+38
2.35098870E-38
2.35098870E-38
2.12676479E+37
2.12676479E+37

— — — ——— AS— ————— —— — — — ——— ——— —— — ——— ——— — —— —— —— ——>" T $———

C-38

TLD ADA COMPILER 1750A-A?A-§(12

MiL-STD-1750A BARE MACHINE TARGET COMPILER

| Parameter Size Value (Range) |
' ceee eesmesceccvas |
| Long_float’epsilon 9.3132257SE-10 |
| Long_float’digits 9 |
| Long_float’mantissa 31 |
| Long_float'’emax 124 |
| Long_float’'safe_emax 124 |
| Duration’Small 1/16384 sec. |
| Allocation Unit 16 bits |
| Stack Pointer Register 16 bits RF |
| Instruction Pointer Register 16 bits IC |
| Volatile Registers 16 bits RO - R14 |
| Non-Volatile Register 16 bits R15 |
| RTS Default Task Stack 1024 words |
| RTS Size (minimum) 1200 words |
| Full Tasking Size 5800 words |
| l

(NOTE: word size = 16 bits)

Cc-39

